
If \[{\mu _r}\] be the relative permeability and \[{\varepsilon _r}\] is the relative dielectric constant of a medium, its refractive index is
(A) \[\dfrac{1}{{\sqrt {{\mu _r}{\varepsilon _r}} }}\]
(B) \[\dfrac{1}{{{\mu _r}{\varepsilon _r}}}\]
(C) \[\sqrt {{\mu _r}{\varepsilon _r}} \]
(D) \[{\mu _r}{\varepsilon _r}\]
Answer
562.2k+ views
Hint:The refractive index of a medium is the ratio of velocity of light in free space to the velocity of light in that medium. Express the speed of light in a medium of permeability \[\mu \] and dielectric constant \[\varepsilon \] and use the relations \[\mu = {\mu _r}{\mu _0}\] and \[\varepsilon = {\varepsilon _r}{\varepsilon _0}\] to rewrite it.
Complete step by step answer:
We know the refractive index of a medium is the ratio of velocity of light in free space to the velocity of light in that medium. Therefore,
\[\mu = \dfrac{c}{v}\] …… (1)
Here, c is the speed of light and v is the speed of light in a medium of refractive index \[\mu \].We know the speed of light in free space is expressed as,
\[c = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\] …… (2)
Here, \[{\mu _0}\] is the permeability of free space and \[{\varepsilon _0}\] is the dielectric constant of the free space.
Also, the speed of light in the medium of permeability \[\mu \] and dielectric constant \[\varepsilon \] is given as,
\[v = \dfrac{1}{{\sqrt {\mu \varepsilon } }}\]
We know that permeability of the medium is the product of relative permeability and permeability of free space. Therefore, we can write,
\[\mu = {\mu _r}{\mu _0}\]
Also, the dielectric constant of a medium is the product of relative dielectric constant and dielectric constant of free space. Therefore, we can write,
\[\varepsilon = {\varepsilon _r}{\varepsilon _0}\].
Therefore, we can express the speed of light as follows,
\[v = \dfrac{1}{{\sqrt {{\mu _r}{\mu _0}{\varepsilon _r}{\varepsilon _0}} }}\] … (3)
Using equations (2) and (3) in equation (1), we get,
\[\mu = \dfrac{{\dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}}}{{\dfrac{1}{{\sqrt {{\mu _r}{\mu _0}{\varepsilon _r}{\varepsilon _0}} }}}}\]
\[ \therefore\mu = \sqrt {{\mu _r}{\varepsilon _r}} \]
So, the correct answer is option (C).
Note:The refractive index of any medium is greater than 1, since the numerator, speed of light in the free space is always greater than speed of light in the given medium. If the relative permeability is equal to the permeability of free space and relative dielectric constant is equal to the relative dielectric constant of free space then the refractive index of the medium is usually written as, \[\mu = \sqrt {{\mu _o}{\varepsilon _o}} \].
Complete step by step answer:
We know the refractive index of a medium is the ratio of velocity of light in free space to the velocity of light in that medium. Therefore,
\[\mu = \dfrac{c}{v}\] …… (1)
Here, c is the speed of light and v is the speed of light in a medium of refractive index \[\mu \].We know the speed of light in free space is expressed as,
\[c = \dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}\] …… (2)
Here, \[{\mu _0}\] is the permeability of free space and \[{\varepsilon _0}\] is the dielectric constant of the free space.
Also, the speed of light in the medium of permeability \[\mu \] and dielectric constant \[\varepsilon \] is given as,
\[v = \dfrac{1}{{\sqrt {\mu \varepsilon } }}\]
We know that permeability of the medium is the product of relative permeability and permeability of free space. Therefore, we can write,
\[\mu = {\mu _r}{\mu _0}\]
Also, the dielectric constant of a medium is the product of relative dielectric constant and dielectric constant of free space. Therefore, we can write,
\[\varepsilon = {\varepsilon _r}{\varepsilon _0}\].
Therefore, we can express the speed of light as follows,
\[v = \dfrac{1}{{\sqrt {{\mu _r}{\mu _0}{\varepsilon _r}{\varepsilon _0}} }}\] … (3)
Using equations (2) and (3) in equation (1), we get,
\[\mu = \dfrac{{\dfrac{1}{{\sqrt {{\mu _0}{\varepsilon _0}} }}}}{{\dfrac{1}{{\sqrt {{\mu _r}{\mu _0}{\varepsilon _r}{\varepsilon _0}} }}}}\]
\[ \therefore\mu = \sqrt {{\mu _r}{\varepsilon _r}} \]
So, the correct answer is option (C).
Note:The refractive index of any medium is greater than 1, since the numerator, speed of light in the free space is always greater than speed of light in the given medium. If the relative permeability is equal to the permeability of free space and relative dielectric constant is equal to the relative dielectric constant of free space then the refractive index of the medium is usually written as, \[\mu = \sqrt {{\mu _o}{\varepsilon _o}} \].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

