
If matrix $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$ and ${{A}^{2}}=KA$, then write the value of K.
Answer
509.7k+ views
Hint: We are given a matrix as $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$. Find ${{A}^{2}}$ by multiply matrix $A\times A$. Then solve the matrix by expanding and applying algebraic identities. Later, try to get the answer in a form of KA where K is a constant and A is the given matrix. Hence, we get the value of K.
Complete step-by-step solution:
Since, we have a matrix given as: $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$. The matrix is of order $2\times 2$.
So, for a matrix of order $2\times 2$, say$A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$,
We have:
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right]
\end{align}\]
So, for the given matrix $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$, we can write:
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\times 1+(-1)\times (-1) & 1\times (-1)+(-1)\times 1 \\
(-1)\times 1+1\times (-1) & (-1)\times (-1)+1\times 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1+1 & -1-1 \\
-1-1 & 1+1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2 & -2 \\
-2 & 2 \\
\end{matrix} \right]......(1)
\end{align}\]
Now, take 2 as common from the equation (1), we get:
\[{{A}^{2}}=2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]......(2)\]
Now, compare equation (2), with ${{A}^{2}}=KA$
We get:
$\begin{align}
& 2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]=KA \\
& 2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]=K\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& 2=K
\end{align}$
Hence, the value of K is 2.
Note: While multiplying two matrices, be careful while choosing the elements and put them in correct place according to the give formula, i.e.
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right]
\end{align}\]
There is a chance of getting wrong answer due to error in multiplication of matrices.
Also, while applying any algebraic identity to the given matrix, it gets applied to all the elements of the matrix. So, when we took 2 common from the matrix, check whether each term is a multiple of 2 or not.
Since, matrices seem like determinant, do not consider it as a determinant. So, we cannot solve the matrix as we solve determinant, i.e. expanding the whole values inside the bracket and then adding them to get a finite value. The final value of a matrix is itself a matrix.
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$. Find ${{A}^{2}}$ by multiply matrix $A\times A$. Then solve the matrix by expanding and applying algebraic identities. Later, try to get the answer in a form of KA where K is a constant and A is the given matrix. Hence, we get the value of K.
Complete step-by-step solution:
Since, we have a matrix given as: $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$. The matrix is of order $2\times 2$.
So, for a matrix of order $2\times 2$, say$A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$,
We have:
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right]
\end{align}\]
So, for the given matrix $A=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]$, we can write:
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\times 1+(-1)\times (-1) & 1\times (-1)+(-1)\times 1 \\
(-1)\times 1+1\times (-1) & (-1)\times (-1)+1\times 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1+1 & -1-1 \\
-1-1 & 1+1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
2 & -2 \\
-2 & 2 \\
\end{matrix} \right]......(1)
\end{align}\]
Now, take 2 as common from the equation (1), we get:
\[{{A}^{2}}=2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]......(2)\]
Now, compare equation (2), with ${{A}^{2}}=KA$
We get:
$\begin{align}
& 2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]=KA \\
& 2\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right]=K\left[ \begin{matrix}
1 & -1 \\
-1 & 1 \\
\end{matrix} \right] \\
& 2=K
\end{align}$
Hence, the value of K is 2.
Note: While multiplying two matrices, be careful while choosing the elements and put them in correct place according to the give formula, i.e.
\[\begin{align}
& {{A}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right]
\end{align}\]
There is a chance of getting wrong answer due to error in multiplication of matrices.
Also, while applying any algebraic identity to the given matrix, it gets applied to all the elements of the matrix. So, when we took 2 common from the matrix, check whether each term is a multiple of 2 or not.
Since, matrices seem like determinant, do not consider it as a determinant. So, we cannot solve the matrix as we solve determinant, i.e. expanding the whole values inside the bracket and then adding them to get a finite value. The final value of a matrix is itself a matrix.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
