
If \[\mathop a\limits^ \wedge \] , \[\mathop b\limits^ \wedge \] and \[\mathop c\limits^ \wedge \] are unit vectors satisfying \[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\] then \[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right|\] is
A 3
B 4
C 5
D 6
Answer
540.3k+ views
Hint: A vector that has a magnitude of 1 is a unit vector, any vector can become a unit vector by dividing it by the magnitude of the given vector, and if \[\mathop a\limits^ \wedge \] , \[\mathop b\limits^ \wedge \] and \[\mathop c\limits^ \wedge \] are unit vectors satisfying \[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\] , then we can expand the terms using the formula of \[{\left( {a - b} \right)^2}\] and then simplify for \[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right|\] .
Formula used:
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc\]
\[{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca\]
In which a, b, c are unit vectors.
Complete step-by-step answer:
Let us write the given data:
\[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\] \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
We can see that the given vector is of the form \[{\left( {a - b} \right)^2}\] , hence let us apply the expansion of that formula as
We know that,
, \[{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc\] and \[{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca\]
Hence, applying to the given vectors:
\[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\]
\[ \Rightarrow \] \[{\left| {\mathop a\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge } \right|^2} - 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + {\left| {\mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge } \right|^2} - 2\mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + {\left| {\mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop a\limits^ \wedge } \right|^2} - 2\mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge = 9\]
Now taking the common terms we get the equation as:
\[2\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9\]
\[3\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - \left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2} + 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9} \right)\]
Since, a, b, c are unit vectors we get
\[3\left( 3 \right) - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9\]
\[9 - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9\]
Hence, we get
\[\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right| = 0\]
\[ \Rightarrow \] \[\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge = 0\] and \[\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge \]
Hence, we get
\[\left( {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right) = 0\]
Now, we need to find the vector \[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right|\]
We can combine the common terms from the given vector as:
\[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right| = \left| {2\mathop a\limits^ \wedge + 5\left( {\mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right)} \right|\]
We know that, since \[\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge \] we get
= \[\left| {2\mathop a\limits^ \wedge + 5\left( { - \mathop a\limits^ \wedge } \right)} \right|\]
\[ \Rightarrow \] \[\left| { - 3\mathop a\limits^ \wedge } \right| = 3\left| {\mathop a\limits^ \wedge } \right|\]
= \[3 \times 1\]
= \[3\]
Therefore, option A is the right answer.
So, the correct answer is “Option A”.
Note: A vector is a quantity that has both magnitudes, as well as direction. Unit vectors are usually determined to form the base of a vector space. Every vector in the space can be expressed as a linear combination of unit vectors.
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude and these unit vectors are commonly used to indicate direction, with a scalar coefficient providing the magnitude. A unit vector contains directional information and if you multiply a positive scalar by a unit vector, then you produce a vector with magnitude equal to that scalar in the direction of the unit vector.
Formula used:
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc\]
\[{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca\]
In which a, b, c are unit vectors.
Complete step-by-step answer:
Let us write the given data:
\[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\] \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
We can see that the given vector is of the form \[{\left( {a - b} \right)^2}\] , hence let us apply the expansion of that formula as
We know that,
, \[{\left( {b - c} \right)^2} = {b^2} + {c^2} - 2bc\] and \[{\left( {c - a} \right)^2} = {c^2} + {a^2} - 2ca\]
Hence, applying to the given vectors:
\[{\left| {\mathop a\limits^ \wedge - \mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge - \mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge - \mathop a\limits^ \wedge } \right|^2} = 9\]
\[ \Rightarrow \] \[{\left| {\mathop a\limits^ \wedge } \right|^2} + {\left| {\mathop b\limits^ \wedge } \right|^2} - 2\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + {\left| {\mathop b\limits^ \wedge } \right|^2} + {\left| {\mathop c\limits^ \wedge } \right|^2} - 2\mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + {\left| {\mathop c\limits^ \wedge } \right|^2} + {\left| {\mathop a\limits^ \wedge } \right|^2} - 2\mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge = 9\]
Now taking the common terms we get the equation as:
\[2\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9\]
\[3\left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2}} \right) - \left( {{{\left| {\mathop a\limits^ \wedge } \right|}^2} + {{\left| {\mathop b\limits^ \wedge } \right|}^2} + {{\left| {\mathop c\limits^ \wedge } \right|}^2} + 2\left( {\mathop a\limits^ \wedge \cdot \mathop b\limits^ \wedge + \mathop b\limits^ \wedge \cdot \mathop c\limits^ \wedge + \mathop c\limits^ \wedge \cdot \mathop a\limits^ \wedge } \right) = 9} \right)\]
Since, a, b, c are unit vectors we get
\[3\left( 3 \right) - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9\]
\[9 - {\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right|^2} = 9\]
Hence, we get
\[\left| {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right| = 0\]
\[ \Rightarrow \] \[\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge = 0\] and \[\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge \]
Hence, we get
\[\left( {\mathop a\limits^ \wedge + \mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right) = 0\]
Now, we need to find the vector \[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right|\]
We can combine the common terms from the given vector as:
\[\left| {2\mathop a\limits^ \wedge + 5\mathop b\limits^ \wedge + 5\mathop c\limits^ \wedge } \right| = \left| {2\mathop a\limits^ \wedge + 5\left( {\mathop b\limits^ \wedge + \mathop c\limits^ \wedge } \right)} \right|\]
We know that, since \[\mathop b\limits^ \wedge + \mathop c\limits^ \wedge = - \mathop a\limits^ \wedge \] we get
= \[\left| {2\mathop a\limits^ \wedge + 5\left( { - \mathop a\limits^ \wedge } \right)} \right|\]
\[ \Rightarrow \] \[\left| { - 3\mathop a\limits^ \wedge } \right| = 3\left| {\mathop a\limits^ \wedge } \right|\]
= \[3 \times 1\]
= \[3\]
Therefore, option A is the right answer.
So, the correct answer is “Option A”.
Note: A vector is a quantity that has both magnitudes, as well as direction. Unit vectors are usually determined to form the base of a vector space. Every vector in the space can be expressed as a linear combination of unit vectors.
To find a unit vector with the same direction as a given vector, we divide the vector by its magnitude and these unit vectors are commonly used to indicate direction, with a scalar coefficient providing the magnitude. A unit vector contains directional information and if you multiply a positive scalar by a unit vector, then you produce a vector with magnitude equal to that scalar in the direction of the unit vector.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

