
If m and n are the smallest positive integers satisfying the relation \[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}},\] then (m + n) has the value equal to:
(a) 36
(b) 96
(c) 72
(d) 60
Answer
584.1k+ views
Hint: To solve this question, first we will convert \[cis\theta \] into the terms of sine and cosine by using the formula \[cis\theta =\cos \theta +i\sin \theta .\] After doing this, we will get the terms like \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}\] on both the sides of the equation. We will write it as \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}=\cos t\theta +i\sin t\theta .\] Then we will compare the real and imaginary parts of the equation obtained. From here, we will get a relation between m and n. Then we will obtain another equation by putting \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}={{\left( {{e}^{i\theta }} \right)}^{t}}\] in the equation obtained earlier. When we will solve both these equations, we will get the values of m and n in terms of k. When we will put k = 1, we will get the smallest value of (m + n).
Complete step-by-step answer:
While we will solve this question, we will get the values of m and n in terms of a constant. To get the minimum value, we will put the value of the constant as 1. In the above question, we have,
\[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}.....\left( i \right)\]
In equation (i), we are going to use the identity as shown:
\[{{\left( ab \right)}^{n}}={{a}^{n}}\times {{b}^{n}}\]
Thus, applying the identity in equation (i), we get the following result,
\[{{2}^{m}}{{\left( cis\dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( cis\dfrac{\pi }{4} \right)}^{n}}....\left( ii \right)\]
In the equation (ii), we are going to use another identity as shown below,
\[cis\theta =\cos \theta +i\sin \theta \]
Thus, after applying this identity, we get,
\[{{2}^{m}}{{\left( \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{n}}.....\left( iii \right)\]
In the equation (iii), we are going to use the following identity,
\[{{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta \]
Thus, we get,
\[{{2}^{m}}\left( \cos \dfrac{m\pi }{6}+i\sin \dfrac{m\pi }{6} \right)={{4}^{n}}\left( \cos \dfrac{n\pi }{4}+i\sin \dfrac{n\pi }{4} \right).....\left( iv \right)\]
Now, we will compare the real and imaginary parts in the above equation. We will compare the real part first.
\[{{2}^{m}}\cos \dfrac{m\pi }{6}={{4}^{n}}\cos \dfrac{n\pi }{4}\]
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{4}^{n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}....\left( v \right)\]
We know that, \[{{4}^{n}}={{2}^{2n}}.\] Thus, we get,
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{2}^{2n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}\]
Also, \[\dfrac{{{2}^{a}}}{{{2}^{b}}}={{2}^{a-b}}.\] Thus,
\[\Rightarrow \cos \dfrac{m\pi }{6}={{2}^{2n-m}}\cos \dfrac{n\pi }{4}.....\left( vi \right)\]
Similarly, now comparing the imaginary part, we get,
\[\sin \dfrac{m\pi }{6}={{2}^{2n-m}}\sin \dfrac{n\pi }{4}.....\left( vii \right)\]
Now, we will square (vi) and (vii) and then add them.
\[{{\left( \cos \dfrac{m\pi }{6} \right)}^{2}}+{{\left( \sin \dfrac{m\pi }{6} \right)}^{2}}={{\left( {{2}^{2n-m}}\cos \dfrac{n\pi }{4} \right)}^{2}}+{{\left( {{2}^{2n-m}}\sin \dfrac{n\pi }{4} \right)}^{2}}\]
\[\Rightarrow \left( {{\cos }^{2}}\dfrac{m\pi }{6} \right)+\left( {{\sin }^{2}}\dfrac{m\pi }{6} \right)={{\left( {{2}^{2n-m}} \right)}^{2}}\left( {{\cos }^{2}}\dfrac{n\pi }{4}+{{\sin }^{2}}\dfrac{n\pi }{4} \right)\]
In the above equation, we are going to use the following identity,
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Thus, we get,
\[1={{\left( {{2}^{2n-m}} \right)}^{2}}\left( 1 \right)\]
\[\Rightarrow {{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
As the bases are equal, powers will be equal. Thus, we get,
\[2n-m=0\]
\[\Rightarrow 2n=m.....\left( viii \right)\]
Now, we are going to use the following identity in (iii).
\[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]
Thus, we get,
\[{{2}^{m}}{{\left( {{e}^{\dfrac{i\pi }{6}}} \right)}^{m}}={{4}^{n}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{n}}\]
\[\Rightarrow {{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow \dfrac{{{e}^{\dfrac{im\pi }{6}}}}{{{e}^{\dfrac{in\pi }{4}}}}=\dfrac{{{4}^{n}}}{{{2}^{m}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}.....\left( ix \right)\]
Now, 2n = m. Thus, we get,
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-2n}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{0}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}=1\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta .\] Thus, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)+i\sin \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=1\]
Now, comparing the real parts, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=\cos 2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{n\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{\left( \dfrac{m}{2} \right)\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m}{6}-\dfrac{m}{8}=2k\]
\[\Rightarrow \dfrac{8m-6m}{48}=2k\]
\[\Rightarrow \dfrac{2m}{48}=2k\]
\[\Rightarrow \dfrac{m}{48}=2k\]
\[\Rightarrow m=48k\]
Thus, \[n=\dfrac{m}{2},\] therefore we get,
\[n=\dfrac{48k}{2}=24k\]
Now, to get the lowest value of m and n, we put k = 1. Thus, m = 48 and n = 24.
Therefore, m + n = 24 + 48 = 72.
So, the correct answer is “Option (c)”.
Note: We can also derive the relation between m and n as follows: We have,
\[{{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}\]
\[\Rightarrow \cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)={{2}^{2n-m}}\]
Here, we can take only positive values of m and n. Also, we are going to apply the boundary condition. The maximum value of LHS is equal to the minimum value of RHS. The maximum value of the cos function is 1. Thus,
\[{{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
\[\Rightarrow 2n=m\]
Complete step-by-step answer:
While we will solve this question, we will get the values of m and n in terms of a constant. To get the minimum value, we will put the value of the constant as 1. In the above question, we have,
\[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}.....\left( i \right)\]
In equation (i), we are going to use the identity as shown:
\[{{\left( ab \right)}^{n}}={{a}^{n}}\times {{b}^{n}}\]
Thus, applying the identity in equation (i), we get the following result,
\[{{2}^{m}}{{\left( cis\dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( cis\dfrac{\pi }{4} \right)}^{n}}....\left( ii \right)\]
In the equation (ii), we are going to use another identity as shown below,
\[cis\theta =\cos \theta +i\sin \theta \]
Thus, after applying this identity, we get,
\[{{2}^{m}}{{\left( \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{n}}.....\left( iii \right)\]
In the equation (iii), we are going to use the following identity,
\[{{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta \]
Thus, we get,
\[{{2}^{m}}\left( \cos \dfrac{m\pi }{6}+i\sin \dfrac{m\pi }{6} \right)={{4}^{n}}\left( \cos \dfrac{n\pi }{4}+i\sin \dfrac{n\pi }{4} \right).....\left( iv \right)\]
Now, we will compare the real and imaginary parts in the above equation. We will compare the real part first.
\[{{2}^{m}}\cos \dfrac{m\pi }{6}={{4}^{n}}\cos \dfrac{n\pi }{4}\]
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{4}^{n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}....\left( v \right)\]
We know that, \[{{4}^{n}}={{2}^{2n}}.\] Thus, we get,
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{2}^{2n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}\]
Also, \[\dfrac{{{2}^{a}}}{{{2}^{b}}}={{2}^{a-b}}.\] Thus,
\[\Rightarrow \cos \dfrac{m\pi }{6}={{2}^{2n-m}}\cos \dfrac{n\pi }{4}.....\left( vi \right)\]
Similarly, now comparing the imaginary part, we get,
\[\sin \dfrac{m\pi }{6}={{2}^{2n-m}}\sin \dfrac{n\pi }{4}.....\left( vii \right)\]
Now, we will square (vi) and (vii) and then add them.
\[{{\left( \cos \dfrac{m\pi }{6} \right)}^{2}}+{{\left( \sin \dfrac{m\pi }{6} \right)}^{2}}={{\left( {{2}^{2n-m}}\cos \dfrac{n\pi }{4} \right)}^{2}}+{{\left( {{2}^{2n-m}}\sin \dfrac{n\pi }{4} \right)}^{2}}\]
\[\Rightarrow \left( {{\cos }^{2}}\dfrac{m\pi }{6} \right)+\left( {{\sin }^{2}}\dfrac{m\pi }{6} \right)={{\left( {{2}^{2n-m}} \right)}^{2}}\left( {{\cos }^{2}}\dfrac{n\pi }{4}+{{\sin }^{2}}\dfrac{n\pi }{4} \right)\]
In the above equation, we are going to use the following identity,
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Thus, we get,
\[1={{\left( {{2}^{2n-m}} \right)}^{2}}\left( 1 \right)\]
\[\Rightarrow {{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
As the bases are equal, powers will be equal. Thus, we get,
\[2n-m=0\]
\[\Rightarrow 2n=m.....\left( viii \right)\]
Now, we are going to use the following identity in (iii).
\[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]
Thus, we get,
\[{{2}^{m}}{{\left( {{e}^{\dfrac{i\pi }{6}}} \right)}^{m}}={{4}^{n}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{n}}\]
\[\Rightarrow {{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow \dfrac{{{e}^{\dfrac{im\pi }{6}}}}{{{e}^{\dfrac{in\pi }{4}}}}=\dfrac{{{4}^{n}}}{{{2}^{m}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}.....\left( ix \right)\]
Now, 2n = m. Thus, we get,
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-2n}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{0}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}=1\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta .\] Thus, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)+i\sin \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=1\]
Now, comparing the real parts, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=\cos 2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{n\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{\left( \dfrac{m}{2} \right)\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m}{6}-\dfrac{m}{8}=2k\]
\[\Rightarrow \dfrac{8m-6m}{48}=2k\]
\[\Rightarrow \dfrac{2m}{48}=2k\]
\[\Rightarrow \dfrac{m}{48}=2k\]
\[\Rightarrow m=48k\]
Thus, \[n=\dfrac{m}{2},\] therefore we get,
\[n=\dfrac{48k}{2}=24k\]
Now, to get the lowest value of m and n, we put k = 1. Thus, m = 48 and n = 24.
Therefore, m + n = 24 + 48 = 72.
So, the correct answer is “Option (c)”.
Note: We can also derive the relation between m and n as follows: We have,
\[{{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}\]
\[\Rightarrow \cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)={{2}^{2n-m}}\]
Here, we can take only positive values of m and n. Also, we are going to apply the boundary condition. The maximum value of LHS is equal to the minimum value of RHS. The maximum value of the cos function is 1. Thus,
\[{{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
\[\Rightarrow 2n=m\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

