
If m and n are the smallest positive integers satisfying the relation \[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}},\] then (m + n) has the value equal to:
(a) 36
(b) 96
(c) 72
(d) 60
Answer
570k+ views
Hint: To solve this question, first we will convert \[cis\theta \] into the terms of sine and cosine by using the formula \[cis\theta =\cos \theta +i\sin \theta .\] After doing this, we will get the terms like \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}\] on both the sides of the equation. We will write it as \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}=\cos t\theta +i\sin t\theta .\] Then we will compare the real and imaginary parts of the equation obtained. From here, we will get a relation between m and n. Then we will obtain another equation by putting \[{{\left( \cos \theta +i\sin \theta \right)}^{t}}={{\left( {{e}^{i\theta }} \right)}^{t}}\] in the equation obtained earlier. When we will solve both these equations, we will get the values of m and n in terms of k. When we will put k = 1, we will get the smallest value of (m + n).
Complete step-by-step answer:
While we will solve this question, we will get the values of m and n in terms of a constant. To get the minimum value, we will put the value of the constant as 1. In the above question, we have,
\[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}.....\left( i \right)\]
In equation (i), we are going to use the identity as shown:
\[{{\left( ab \right)}^{n}}={{a}^{n}}\times {{b}^{n}}\]
Thus, applying the identity in equation (i), we get the following result,
\[{{2}^{m}}{{\left( cis\dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( cis\dfrac{\pi }{4} \right)}^{n}}....\left( ii \right)\]
In the equation (ii), we are going to use another identity as shown below,
\[cis\theta =\cos \theta +i\sin \theta \]
Thus, after applying this identity, we get,
\[{{2}^{m}}{{\left( \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{n}}.....\left( iii \right)\]
In the equation (iii), we are going to use the following identity,
\[{{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta \]
Thus, we get,
\[{{2}^{m}}\left( \cos \dfrac{m\pi }{6}+i\sin \dfrac{m\pi }{6} \right)={{4}^{n}}\left( \cos \dfrac{n\pi }{4}+i\sin \dfrac{n\pi }{4} \right).....\left( iv \right)\]
Now, we will compare the real and imaginary parts in the above equation. We will compare the real part first.
\[{{2}^{m}}\cos \dfrac{m\pi }{6}={{4}^{n}}\cos \dfrac{n\pi }{4}\]
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{4}^{n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}....\left( v \right)\]
We know that, \[{{4}^{n}}={{2}^{2n}}.\] Thus, we get,
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{2}^{2n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}\]
Also, \[\dfrac{{{2}^{a}}}{{{2}^{b}}}={{2}^{a-b}}.\] Thus,
\[\Rightarrow \cos \dfrac{m\pi }{6}={{2}^{2n-m}}\cos \dfrac{n\pi }{4}.....\left( vi \right)\]
Similarly, now comparing the imaginary part, we get,
\[\sin \dfrac{m\pi }{6}={{2}^{2n-m}}\sin \dfrac{n\pi }{4}.....\left( vii \right)\]
Now, we will square (vi) and (vii) and then add them.
\[{{\left( \cos \dfrac{m\pi }{6} \right)}^{2}}+{{\left( \sin \dfrac{m\pi }{6} \right)}^{2}}={{\left( {{2}^{2n-m}}\cos \dfrac{n\pi }{4} \right)}^{2}}+{{\left( {{2}^{2n-m}}\sin \dfrac{n\pi }{4} \right)}^{2}}\]
\[\Rightarrow \left( {{\cos }^{2}}\dfrac{m\pi }{6} \right)+\left( {{\sin }^{2}}\dfrac{m\pi }{6} \right)={{\left( {{2}^{2n-m}} \right)}^{2}}\left( {{\cos }^{2}}\dfrac{n\pi }{4}+{{\sin }^{2}}\dfrac{n\pi }{4} \right)\]
In the above equation, we are going to use the following identity,
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Thus, we get,
\[1={{\left( {{2}^{2n-m}} \right)}^{2}}\left( 1 \right)\]
\[\Rightarrow {{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
As the bases are equal, powers will be equal. Thus, we get,
\[2n-m=0\]
\[\Rightarrow 2n=m.....\left( viii \right)\]
Now, we are going to use the following identity in (iii).
\[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]
Thus, we get,
\[{{2}^{m}}{{\left( {{e}^{\dfrac{i\pi }{6}}} \right)}^{m}}={{4}^{n}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{n}}\]
\[\Rightarrow {{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow \dfrac{{{e}^{\dfrac{im\pi }{6}}}}{{{e}^{\dfrac{in\pi }{4}}}}=\dfrac{{{4}^{n}}}{{{2}^{m}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}.....\left( ix \right)\]
Now, 2n = m. Thus, we get,
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-2n}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{0}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}=1\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta .\] Thus, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)+i\sin \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=1\]
Now, comparing the real parts, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=\cos 2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{n\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{\left( \dfrac{m}{2} \right)\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m}{6}-\dfrac{m}{8}=2k\]
\[\Rightarrow \dfrac{8m-6m}{48}=2k\]
\[\Rightarrow \dfrac{2m}{48}=2k\]
\[\Rightarrow \dfrac{m}{48}=2k\]
\[\Rightarrow m=48k\]
Thus, \[n=\dfrac{m}{2},\] therefore we get,
\[n=\dfrac{48k}{2}=24k\]
Now, to get the lowest value of m and n, we put k = 1. Thus, m = 48 and n = 24.
Therefore, m + n = 24 + 48 = 72.
So, the correct answer is “Option (c)”.
Note: We can also derive the relation between m and n as follows: We have,
\[{{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}\]
\[\Rightarrow \cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)={{2}^{2n-m}}\]
Here, we can take only positive values of m and n. Also, we are going to apply the boundary condition. The maximum value of LHS is equal to the minimum value of RHS. The maximum value of the cos function is 1. Thus,
\[{{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
\[\Rightarrow 2n=m\]
Complete step-by-step answer:
While we will solve this question, we will get the values of m and n in terms of a constant. To get the minimum value, we will put the value of the constant as 1. In the above question, we have,
\[{{\left( 2cis\dfrac{\pi }{6} \right)}^{m}}={{\left( 4\cos \dfrac{\pi }{4} \right)}^{n}}.....\left( i \right)\]
In equation (i), we are going to use the identity as shown:
\[{{\left( ab \right)}^{n}}={{a}^{n}}\times {{b}^{n}}\]
Thus, applying the identity in equation (i), we get the following result,
\[{{2}^{m}}{{\left( cis\dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( cis\dfrac{\pi }{4} \right)}^{n}}....\left( ii \right)\]
In the equation (ii), we are going to use another identity as shown below,
\[cis\theta =\cos \theta +i\sin \theta \]
Thus, after applying this identity, we get,
\[{{2}^{m}}{{\left( \cos \dfrac{\pi }{6}+i\sin \dfrac{\pi }{6} \right)}^{m}}={{4}^{n}}{{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{n}}.....\left( iii \right)\]
In the equation (iii), we are going to use the following identity,
\[{{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta \]
Thus, we get,
\[{{2}^{m}}\left( \cos \dfrac{m\pi }{6}+i\sin \dfrac{m\pi }{6} \right)={{4}^{n}}\left( \cos \dfrac{n\pi }{4}+i\sin \dfrac{n\pi }{4} \right).....\left( iv \right)\]
Now, we will compare the real and imaginary parts in the above equation. We will compare the real part first.
\[{{2}^{m}}\cos \dfrac{m\pi }{6}={{4}^{n}}\cos \dfrac{n\pi }{4}\]
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{4}^{n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}....\left( v \right)\]
We know that, \[{{4}^{n}}={{2}^{2n}}.\] Thus, we get,
\[\Rightarrow \cos \dfrac{m\pi }{6}=\dfrac{{{2}^{2n}}\cos \dfrac{n\pi }{4}}{{{2}^{m}}}\]
Also, \[\dfrac{{{2}^{a}}}{{{2}^{b}}}={{2}^{a-b}}.\] Thus,
\[\Rightarrow \cos \dfrac{m\pi }{6}={{2}^{2n-m}}\cos \dfrac{n\pi }{4}.....\left( vi \right)\]
Similarly, now comparing the imaginary part, we get,
\[\sin \dfrac{m\pi }{6}={{2}^{2n-m}}\sin \dfrac{n\pi }{4}.....\left( vii \right)\]
Now, we will square (vi) and (vii) and then add them.
\[{{\left( \cos \dfrac{m\pi }{6} \right)}^{2}}+{{\left( \sin \dfrac{m\pi }{6} \right)}^{2}}={{\left( {{2}^{2n-m}}\cos \dfrac{n\pi }{4} \right)}^{2}}+{{\left( {{2}^{2n-m}}\sin \dfrac{n\pi }{4} \right)}^{2}}\]
\[\Rightarrow \left( {{\cos }^{2}}\dfrac{m\pi }{6} \right)+\left( {{\sin }^{2}}\dfrac{m\pi }{6} \right)={{\left( {{2}^{2n-m}} \right)}^{2}}\left( {{\cos }^{2}}\dfrac{n\pi }{4}+{{\sin }^{2}}\dfrac{n\pi }{4} \right)\]
In the above equation, we are going to use the following identity,
\[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
Thus, we get,
\[1={{\left( {{2}^{2n-m}} \right)}^{2}}\left( 1 \right)\]
\[\Rightarrow {{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
As the bases are equal, powers will be equal. Thus, we get,
\[2n-m=0\]
\[\Rightarrow 2n=m.....\left( viii \right)\]
Now, we are going to use the following identity in (iii).
\[\cos \theta +i\sin \theta ={{e}^{i\theta }}\]
Thus, we get,
\[{{2}^{m}}{{\left( {{e}^{\dfrac{i\pi }{6}}} \right)}^{m}}={{4}^{n}}{{\left( {{e}^{\dfrac{i\pi }{4}}} \right)}^{n}}\]
\[\Rightarrow {{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow \dfrac{{{e}^{\dfrac{im\pi }{6}}}}{{{e}^{\dfrac{in\pi }{4}}}}=\dfrac{{{4}^{n}}}{{{2}^{m}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}.....\left( ix \right)\]
Now, 2n = m. Thus, we get,
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-2n}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{0}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}=1\]
Now, we know that \[{{e}^{i\theta }}=\cos \theta +i\sin \theta .\] Thus, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)+i\sin \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=1\]
Now, comparing the real parts, we get,
\[\cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)=\cos 2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{n\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m\pi }{6}-\dfrac{\left( \dfrac{m}{2} \right)\pi }{4}=2k\pi \]
\[\Rightarrow \dfrac{m}{6}-\dfrac{m}{8}=2k\]
\[\Rightarrow \dfrac{8m-6m}{48}=2k\]
\[\Rightarrow \dfrac{2m}{48}=2k\]
\[\Rightarrow \dfrac{m}{48}=2k\]
\[\Rightarrow m=48k\]
Thus, \[n=\dfrac{m}{2},\] therefore we get,
\[n=\dfrac{48k}{2}=24k\]
Now, to get the lowest value of m and n, we put k = 1. Thus, m = 48 and n = 24.
Therefore, m + n = 24 + 48 = 72.
So, the correct answer is “Option (c)”.
Note: We can also derive the relation between m and n as follows: We have,
\[{{2}^{m}}{{e}^{\dfrac{im\pi }{6}}}={{4}^{n}}{{e}^{\dfrac{in\pi }{4}}}\]
\[\Rightarrow {{e}^{i\left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)}}={{2}^{2n-m}}\]
\[\Rightarrow \cos \left( \dfrac{m\pi }{6}-\dfrac{n\pi }{4} \right)={{2}^{2n-m}}\]
Here, we can take only positive values of m and n. Also, we are going to apply the boundary condition. The maximum value of LHS is equal to the minimum value of RHS. The maximum value of the cos function is 1. Thus,
\[{{2}^{2n-m}}=1\]
\[\Rightarrow {{2}^{2n-m}}={{2}^{0}}\]
\[\Rightarrow 2n=m\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

