
If ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1,$ then value of $a{{b}^{3}}$ is
(a) 9
(b) 3
(c) 1
(d) $\dfrac{1}{3}$
Answer
555k+ views
Hint: We start solving the problem by writing 1 as ${{\log }_{3}}3$. We then make use of results ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$, $-{{\log }_{p}}q={{\log }_{p}}\left( \dfrac{1}{q} \right)$, ${{\log }_{d}}e-{{\log }_{d}}f={{\log }_{d}}\left( \dfrac{e}{f} \right)$ to proceed through the problem. We then make use of the fact that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$ to proceed further. We then make use of the results $\dfrac{{{\log }_{d}}e}{{{\log }_{d}}f}={{\log }_{f}}e$ and if ${{\log }_{d}}e=f$, then $e={{d}^{f}}$ to get the value of $a{{b}^{3}}$.
Complete step by step answer:
According to the problem, we are given that ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1,$ we need to find the value of $a{{b}^{3}}$.
So, we have ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1$ ---(1).
We know that ${{\log }_{p}}p=1$. Let us use this result in equation (1) by taking $p=3$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$ ---(2).
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$. Let us use this result in equation (2).
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( -{{\log }_{3}}b \right)={{\log }_{3}}3$ ---(3).
We know that $-{{\log }_{p}}q={{\log }_{p}}\left( \dfrac{1}{q} \right)$. Let us use this result in equation (3).
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( {{\log }_{3}}\dfrac{1}{b} \right)={{\log }_{3}}3$ ---(4).
We know that ${{\log }_{d}}e-{{\log }_{d}}f={{\log }_{d}}\left( \dfrac{e}{f} \right)$. Let us use this result in equation (4).
$\Rightarrow {{\log }_{3}}\left( \dfrac{{{\log }_{3}}a}{{{\log }_{3}}\dfrac{1}{b}} \right)={{\log }_{3}}3$ ---(5).
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$. Let us use this result in equation (5).
$\Rightarrow \dfrac{{{\log }_{3}}a}{{{\log }_{3}}\dfrac{1}{b}}=3$ ---(6).
We know that $\dfrac{{{\log }_{d}}e}{{{\log }_{d}}f}={{\log }_{f}}e$. Let us use this result in equation (6).
$\Rightarrow {{\log }_{\dfrac{1}{b}}}a=3$ ---(7).
We know that if ${{\log }_{d}}e=f$, then $e={{d}^{f}}$. Let us use this result in equation (7).
$\Rightarrow a={{\left( \dfrac{1}{b} \right)}^{3}}$.
$\Rightarrow a=\dfrac{1}{{{b}^{3}}}$.
$\Rightarrow a{{b}^{3}}=1$.
So, we have found the value of $a{{b}^{3}}$ as 1.
So, the correct answer is “Option c”.
Note: We can see that the given problem has a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
So, we have ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1$.
We know that ${{\log }_{p}}p=1$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$.
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$.
We know that ${{\log }_{d}}e-{{\log }_{d}}f={{\log }_{d}}\left( \dfrac{e}{f} \right)$.
$\Rightarrow {{\log }_{3}}\left( \dfrac{{{\log }_{3}}a}{{{\log }_{\dfrac{1}{3}}}b} \right)={{\log }_{3}}3$.
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$.
$\Rightarrow \dfrac{{{\log }_{3}}a}{{{\log }_{\dfrac{1}{3}}}b}=3$.
$\Rightarrow {{\log }_{3}}a=3{{\log }_{\dfrac{1}{3}}}b$.
We know that $n{{\log }_{a}}d={{\log }_{a}}{{d}^{n}}$.
$\Rightarrow {{\log }_{3}}a={{\log }_{\dfrac{1}{3}}}{{b}^{3}}$.
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$.
$\Rightarrow {{\log }_{3}}a=-{{\log }_{3}}{{b}^{3}}$.
We know that $-{{\log }_{p}}q={{\log }_{p}}\left( \dfrac{1}{q} \right)$.
$\Rightarrow {{\log }_{3}}a={{\log }_{3}}\left( \dfrac{1}{{{b}^{3}}} \right)$.
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$.
$\Rightarrow a=\dfrac{1}{{{b}^{3}}}$.
$\Rightarrow a{{b}^{3}}=1$.
Complete step by step answer:
According to the problem, we are given that ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1,$ we need to find the value of $a{{b}^{3}}$.
So, we have ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1$ ---(1).
We know that ${{\log }_{p}}p=1$. Let us use this result in equation (1) by taking $p=3$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$ ---(2).
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$. Let us use this result in equation (2).
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( -{{\log }_{3}}b \right)={{\log }_{3}}3$ ---(3).
We know that $-{{\log }_{p}}q={{\log }_{p}}\left( \dfrac{1}{q} \right)$. Let us use this result in equation (3).
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( {{\log }_{3}}\dfrac{1}{b} \right)={{\log }_{3}}3$ ---(4).
We know that ${{\log }_{d}}e-{{\log }_{d}}f={{\log }_{d}}\left( \dfrac{e}{f} \right)$. Let us use this result in equation (4).
$\Rightarrow {{\log }_{3}}\left( \dfrac{{{\log }_{3}}a}{{{\log }_{3}}\dfrac{1}{b}} \right)={{\log }_{3}}3$ ---(5).
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$. Let us use this result in equation (5).
$\Rightarrow \dfrac{{{\log }_{3}}a}{{{\log }_{3}}\dfrac{1}{b}}=3$ ---(6).
We know that $\dfrac{{{\log }_{d}}e}{{{\log }_{d}}f}={{\log }_{f}}e$. Let us use this result in equation (6).
$\Rightarrow {{\log }_{\dfrac{1}{b}}}a=3$ ---(7).
We know that if ${{\log }_{d}}e=f$, then $e={{d}^{f}}$. Let us use this result in equation (7).
$\Rightarrow a={{\left( \dfrac{1}{b} \right)}^{3}}$.
$\Rightarrow a=\dfrac{1}{{{b}^{3}}}$.
$\Rightarrow a{{b}^{3}}=1$.
So, we have found the value of $a{{b}^{3}}$ as 1.
So, the correct answer is “Option c”.
Note: We can see that the given problem has a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
So, we have ${{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)=1$.
We know that ${{\log }_{p}}p=1$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)+{{\log }_{\dfrac{1}{3}}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$.
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$.
$\Rightarrow {{\log }_{3}}\left( {{\log }_{3}}a \right)-{{\log }_{3}}\left( {{\log }_{\dfrac{1}{3}}}b \right)={{\log }_{3}}3$.
We know that ${{\log }_{d}}e-{{\log }_{d}}f={{\log }_{d}}\left( \dfrac{e}{f} \right)$.
$\Rightarrow {{\log }_{3}}\left( \dfrac{{{\log }_{3}}a}{{{\log }_{\dfrac{1}{3}}}b} \right)={{\log }_{3}}3$.
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$.
$\Rightarrow \dfrac{{{\log }_{3}}a}{{{\log }_{\dfrac{1}{3}}}b}=3$.
$\Rightarrow {{\log }_{3}}a=3{{\log }_{\dfrac{1}{3}}}b$.
We know that $n{{\log }_{a}}d={{\log }_{a}}{{d}^{n}}$.
$\Rightarrow {{\log }_{3}}a={{\log }_{\dfrac{1}{3}}}{{b}^{3}}$.
We know that ${{\log }_{\dfrac{1}{p}}}q=-{{\log }_{p}}q$.
$\Rightarrow {{\log }_{3}}a=-{{\log }_{3}}{{b}^{3}}$.
We know that $-{{\log }_{p}}q={{\log }_{p}}\left( \dfrac{1}{q} \right)$.
$\Rightarrow {{\log }_{3}}a={{\log }_{3}}\left( \dfrac{1}{{{b}^{3}}} \right)$.
We know that if ${{\log }_{a}}d={{\log }_{a}}e$, then we get $d=e$.
$\Rightarrow a=\dfrac{1}{{{b}^{3}}}$.
$\Rightarrow a{{b}^{3}}=1$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

