
If $ {\log _{0.5}}(\sin x) = 1 - {\log _{0.5}}(\cos x) $ ,then the number of values of $ x \in [ - 2\pi ,2\pi ] $ is
Answer
575.7k+ views
Hint: The logarithmic function has some nice properties which we can use to simplify the given equation and reach at a point to obtain a simple trigonometric function where the general value of $ x $ can be found using simple trigonometric identity. Then we can identify which values of $ x \in [ - 2\pi ,2\pi ] $ .
$ {\log _a}(a) = 1 $
$ {\log _a}(b) = {\log _a}(c) \Rightarrow b = c $
$ {\log _a}(\dfrac{b}{c}) = {\log _a}(b) - {\log _a}(c) $ where, $ a,b,c \in \mathbb{R} $
$ 2\sin x\cos x = \sin 2x $
Complete step-by-step answer:
The given trigonometric equation is:
$ {\log _{0.5}}(\sin x) = 1 - {\log _{0.5}}(\cos x) $ --(1)
We need to solve the trigonometric equation.
Since, $ {\log _{0.5}}(0.5) = 1 $ so (1) can be modified as:
$ {\log _{0.5}}(\sin x) = {\log _{0.5}}(0.5) - {\log _{0.5}}(\cos x) $
$ \Rightarrow {\log _{0.5}}(\sin x) = {\log _{0.5}}(\dfrac{{0.5}}{{\cos x}}) $
$ \Rightarrow \sin x = \dfrac{{0.5}}{{\cos x}} $ [ $ \because {\log _a}(b) = {\log _a}(c) \Rightarrow b = c $ ]
On cross multiplication we get:
$ \Rightarrow \sin x\cos x = 0.5 $
$ \Rightarrow 2\sin x\cos x = 2 \times 0.5 $ [ Multiplying $ 2 $ on both sides of the equation]
$ \Rightarrow \sin 2x = 1 $
The general solution for the above equation is:
$ 2x = \dfrac{{(4n + 1)\pi }}{2} $ where, $ n \in \mathbb{Z} $
$ \Rightarrow x = \dfrac{{(4n + 1)\pi }}{4} $ where, $ n \in \mathbb{Z} $
For $ n = 0 $ ,
$ x = \dfrac{{(0 + 1)\pi }}{4} = \dfrac{\pi }{4} \in [ - 2\pi ,2\pi ] $
For $ n = 1 $ ,
$ x = \dfrac{{(4 + 1)\pi }}{4} = \dfrac{{5\pi }}{4} \in [ - 2\pi ,2\pi ] $
For $ n = 2 $ ,
$ x = \dfrac{{(8 + 1)\pi }}{4} = \dfrac{{9\pi }}{4} \notin [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 1 $ ,
$ x = \dfrac{{( - 4 + 1)\pi }}{4} = \dfrac{{ - 3\pi }}{4} \in [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 2 $ ,
$ x = \dfrac{{( - 8 + 1)\pi }}{4} = \dfrac{{ - 7\pi }}{4} \in [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 3 $ ,
$ x = \dfrac{{( - 12 + 1)\pi }}{4} = \dfrac{{ - 11\pi }}{4} \notin [ - 2\pi ,2\pi ] $
Thus, the number of values of $ x \in [ - 2\pi ,2\pi ] $ is $ 4 $ which can be listed as $ \{ \dfrac{{ - 7\pi }}{4},\dfrac{{ - 3\pi }}{4},\dfrac{\pi }{4},\dfrac{{5\pi }}{4}\} $
Therefore, the number of values of $ x \in [ - 2\pi ,2\pi ] $ is $ 4 $ .
Note: Keep in mind that the general solution should be given first priority instead of the principal solution of the trigonometric function. The principal solution is the smallest solution satisfying the trigonometric function.
$ {\log _a}(a) = 1 $
$ {\log _a}(b) = {\log _a}(c) \Rightarrow b = c $
$ {\log _a}(\dfrac{b}{c}) = {\log _a}(b) - {\log _a}(c) $ where, $ a,b,c \in \mathbb{R} $
$ 2\sin x\cos x = \sin 2x $
Complete step-by-step answer:
The given trigonometric equation is:
$ {\log _{0.5}}(\sin x) = 1 - {\log _{0.5}}(\cos x) $ --(1)
We need to solve the trigonometric equation.
Since, $ {\log _{0.5}}(0.5) = 1 $ so (1) can be modified as:
$ {\log _{0.5}}(\sin x) = {\log _{0.5}}(0.5) - {\log _{0.5}}(\cos x) $
$ \Rightarrow {\log _{0.5}}(\sin x) = {\log _{0.5}}(\dfrac{{0.5}}{{\cos x}}) $
$ \Rightarrow \sin x = \dfrac{{0.5}}{{\cos x}} $ [ $ \because {\log _a}(b) = {\log _a}(c) \Rightarrow b = c $ ]
On cross multiplication we get:
$ \Rightarrow \sin x\cos x = 0.5 $
$ \Rightarrow 2\sin x\cos x = 2 \times 0.5 $ [ Multiplying $ 2 $ on both sides of the equation]
$ \Rightarrow \sin 2x = 1 $
The general solution for the above equation is:
$ 2x = \dfrac{{(4n + 1)\pi }}{2} $ where, $ n \in \mathbb{Z} $
$ \Rightarrow x = \dfrac{{(4n + 1)\pi }}{4} $ where, $ n \in \mathbb{Z} $
For $ n = 0 $ ,
$ x = \dfrac{{(0 + 1)\pi }}{4} = \dfrac{\pi }{4} \in [ - 2\pi ,2\pi ] $
For $ n = 1 $ ,
$ x = \dfrac{{(4 + 1)\pi }}{4} = \dfrac{{5\pi }}{4} \in [ - 2\pi ,2\pi ] $
For $ n = 2 $ ,
$ x = \dfrac{{(8 + 1)\pi }}{4} = \dfrac{{9\pi }}{4} \notin [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 1 $ ,
$ x = \dfrac{{( - 4 + 1)\pi }}{4} = \dfrac{{ - 3\pi }}{4} \in [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 2 $ ,
$ x = \dfrac{{( - 8 + 1)\pi }}{4} = \dfrac{{ - 7\pi }}{4} \in [ - 2\pi ,2\pi ] $
Similarly, for $ n = - 3 $ ,
$ x = \dfrac{{( - 12 + 1)\pi }}{4} = \dfrac{{ - 11\pi }}{4} \notin [ - 2\pi ,2\pi ] $
Thus, the number of values of $ x \in [ - 2\pi ,2\pi ] $ is $ 4 $ which can be listed as $ \{ \dfrac{{ - 7\pi }}{4},\dfrac{{ - 3\pi }}{4},\dfrac{\pi }{4},\dfrac{{5\pi }}{4}\} $
Therefore, the number of values of $ x \in [ - 2\pi ,2\pi ] $ is $ 4 $ .
Note: Keep in mind that the general solution should be given first priority instead of the principal solution of the trigonometric function. The principal solution is the smallest solution satisfying the trigonometric function.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

