
If linear function $f\left( x \right)$ and $g\left( x \right)$ satisfy $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} $, then
A.$f\left( x \right) = 3\left( {x - 1} \right)$
B.$f\left( x \right) = 3x - 5$
C.$g\left( x \right) = 3\left( {x - 1} \right)$
D.$g\left( x \right) = 3 + x$
Answer
504k+ views
Hint: In order to find the correct option, start with solving the equation on the left side of the function using the product rule, \[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]. Solve the two operands of the equations separately and substitute at the original equation at last. Solve and get the results.
Formula used:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
\[\int {\cos xdx = \sin x + C_1} \]
\[\int {\sin xdx = - \cos x + C_2} \]
Complete step-by-step answer:
We are given with an equation $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} $., where $f\left( x \right)$ and $g\left( x \right)$ are two linear functions.
We are initiating with solving the left-hand side of the equation that is $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx} $
We can split the integration into operands and we get:
$ \Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} } $ ……(1)
We would integrate each operand separately, starting with the first operand:
$\int {\left( {3x - 1} \right)\cos xdx} $
We can see it also contains two different functions inside the bracket, which is $\left( {3x - 1} \right){{ and }}\cos x$, so we would use the product rule of differentiation, that is:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
Comparing \[\smallint u{{ }}v{{ }}dx{{ }}\]with $\int {\left( {3x - 1} \right)\cos xdx} $, we get:
\[u = \left( {3x - 1} \right)\]
\[v = \cos x\]
Substituting the values of u and v in the above equation and we get:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right)\smallint {{ }}\cos xdx{{ }} - \smallint \dfrac{{d\left( {3x - 1} \right)}}{{dx}}{{ }}\left( {\smallint \cos x{{ }}dx} \right){{ }}dx\]
Since, we know that \[\int {\cos xdx = \sin x + C_1} \] and \[\dfrac{{d\left( {3x} \right)}}{{dx}} = 3\]. So, substituting the values in the above equation and we get:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - \smallint 3{{ sinx }}dx\]
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\smallint {{sinx }}dx\]
Since, we know that \[\int {\sin xdx = - \cos x + C_2} \], so substituting it:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\left( { - \cos x + C_2} \right)\]
Opening the braces:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + C_1 + }}3\cos x + C_2\]
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + }}3\cos x + C_1\] …….(2)
Similarly, solving for the second operand, and we get:
$\int {\left( {1 - 2x} \right)\sin xdx} $
Here also we can see it also contains two different functions inside the bracket, which is $\left( {1 - 2x} \right){{ and sin}}x$, so we would use the product rule of differentiation, that is:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
Comparing \[\smallint u{{ }}v{{ }}dx{{ }}\]with $\int {\left( {1 - 2x} \right)\sin xdx} $, we get:
\[u = \left( {1 - 2x} \right)\]
\[v = \sin x\]
Substituting the values of u and v in the above equation and we get:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} {{ }} = {{ }}\left( {1 - 2x} \right)\smallint \sin xdx{{ }} - \smallint \dfrac{{d\left( {1 - 2x} \right)}}{{dx}}{{ }}\left( {\smallint \sin x{{ }}dx} \right){{ }}dx\]
Since, we know that \[\int {\sin xdx = - \cos x + C_3} \] and \[\dfrac{{d\left( { - 2x} \right)}}{{dx}} = - 2\]. So, substituting the values in the above equation and we get:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 }} - \smallint \left( { - 2} \right){{ }}\left( { - \cos x} \right){{ }}dx\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 + 2}}\smallint {{ }}\left( { - \cos x} \right){{ }}dx\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\smallint {{ }}\cos x{{ }}dx\]
Since, we know that \[\int {\cos xdx = \sin x + C_4} \], so substituting it:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\left( {\sin x + C_4} \right)\]
Opening the braces:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx + C_3 - 2sinx - 2C_4}}\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx - 2sinx + C_2}}\] …….(3)
Substituting the values of equation 2 and equation 3 in equation 1, we get:
$ \Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} } $
$ \Rightarrow {{3xsinx - sinx + }}3\cos x + C_1 + \left( {{{ - cosx + 2xcosx - 2sinx + C_2}}} \right)$
Solving the equation:
$ \Rightarrow {{3xsinx - sinx + }}3\cos x + C_1{{ - cosx + 2xcosx - 2sinx + C_2}}$
$ \Rightarrow {{3xsinx - 3sinx + 2}}\cos x{{ + 2xcosx + C}}$
Taking $\sin x$ and $\cos x$ common in braces and we get:
$ \Rightarrow \left( {{{3x - 3}}} \right){{sinx + }}\left( {{{2 + 2x}}} \right)\cos x{{ + C}}$
$ \Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C}}$
Comparing this equation with the right-hand side of the equation $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} $, we get:
$ \Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C = }}f\left( x \right)\cos x + g\left( x \right) + c$
This shows
$f\left( x \right) = \left( {2 + 2x} \right) = 2\left( {1 + x} \right)$
$g\left( x \right) = \left( {3x - 3} \right) = 3\left( {x - 1} \right)$
So, the correct answer is “Option C”.
Note: It’s important to remember the formulas of differentiation and integration to solve this type of question.
We have taken $C_1 + C_2 = C_1$ and other also the same because the sum of two constant terms will also be a constant term.
Formula used:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
\[\int {\cos xdx = \sin x + C_1} \]
\[\int {\sin xdx = - \cos x + C_2} \]
Complete step-by-step answer:
We are given with an equation $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} $., where $f\left( x \right)$ and $g\left( x \right)$ are two linear functions.
We are initiating with solving the left-hand side of the equation that is $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx} $
We can split the integration into operands and we get:
$ \Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} } $ ……(1)
We would integrate each operand separately, starting with the first operand:
$\int {\left( {3x - 1} \right)\cos xdx} $
We can see it also contains two different functions inside the bracket, which is $\left( {3x - 1} \right){{ and }}\cos x$, so we would use the product rule of differentiation, that is:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
Comparing \[\smallint u{{ }}v{{ }}dx{{ }}\]with $\int {\left( {3x - 1} \right)\cos xdx} $, we get:
\[u = \left( {3x - 1} \right)\]
\[v = \cos x\]
Substituting the values of u and v in the above equation and we get:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right)\smallint {{ }}\cos xdx{{ }} - \smallint \dfrac{{d\left( {3x - 1} \right)}}{{dx}}{{ }}\left( {\smallint \cos x{{ }}dx} \right){{ }}dx\]
Since, we know that \[\int {\cos xdx = \sin x + C_1} \] and \[\dfrac{{d\left( {3x} \right)}}{{dx}} = 3\]. So, substituting the values in the above equation and we get:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - \smallint 3{{ sinx }}dx\]
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\smallint {{sinx }}dx\]
Since, we know that \[\int {\sin xdx = - \cos x + C_2} \], so substituting it:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ }}\left( {3x - 1} \right){{sinx + C_1 }} - 3\left( { - \cos x + C_2} \right)\]
Opening the braces:
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + C_1 + }}3\cos x + C_2\]
\[ \Rightarrow \smallint \left( {3x - 1} \right)\cos xdx{{ }} = {{ 3xsinx - sinx + }}3\cos x + C_1\] …….(2)
Similarly, solving for the second operand, and we get:
$\int {\left( {1 - 2x} \right)\sin xdx} $
Here also we can see it also contains two different functions inside the bracket, which is $\left( {1 - 2x} \right){{ and sin}}x$, so we would use the product rule of differentiation, that is:
\[\smallint u{{ }}v{{ }}dx{{ }} = {{ }}u\smallint v{{ }}dx{{ }} - \smallint u'{{ }}\left( {\smallint v{{ }}dx} \right){{ }}dx\]
Comparing \[\smallint u{{ }}v{{ }}dx{{ }}\]with $\int {\left( {1 - 2x} \right)\sin xdx} $, we get:
\[u = \left( {1 - 2x} \right)\]
\[v = \sin x\]
Substituting the values of u and v in the above equation and we get:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} {{ }} = {{ }}\left( {1 - 2x} \right)\smallint \sin xdx{{ }} - \smallint \dfrac{{d\left( {1 - 2x} \right)}}{{dx}}{{ }}\left( {\smallint \sin x{{ }}dx} \right){{ }}dx\]
Since, we know that \[\int {\sin xdx = - \cos x + C_3} \] and \[\dfrac{{d\left( { - 2x} \right)}}{{dx}} = - 2\]. So, substituting the values in the above equation and we get:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 }} - \smallint \left( { - 2} \right){{ }}\left( { - \cos x} \right){{ }}dx\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 + 2}}\smallint {{ }}\left( { - \cos x} \right){{ }}dx\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\smallint {{ }}\cos x{{ }}dx\]
Since, we know that \[\int {\cos xdx = \sin x + C_4} \], so substituting it:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ }}\left( {1 - 2x} \right)\left( { - \cos x} \right){{ + C_3 - 2}}\left( {\sin x + C_4} \right)\]
Opening the braces:
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx + C_3 - 2sinx - 2C_4}}\]
\[ \Rightarrow \int {\left( {1 - 2x} \right)\sin xdx} = {{ - cosx + 2xcosx - 2sinx + C_2}}\] …….(3)
Substituting the values of equation 2 and equation 3 in equation 1, we get:
$ \Rightarrow \int {\left( {3x - 1} \right)\cos xdx + \int {\left( {1 - 2x} \right)\sin xdx} } $
$ \Rightarrow {{3xsinx - sinx + }}3\cos x + C_1 + \left( {{{ - cosx + 2xcosx - 2sinx + C_2}}} \right)$
Solving the equation:
$ \Rightarrow {{3xsinx - sinx + }}3\cos x + C_1{{ - cosx + 2xcosx - 2sinx + C_2}}$
$ \Rightarrow {{3xsinx - 3sinx + 2}}\cos x{{ + 2xcosx + C}}$
Taking $\sin x$ and $\cos x$ common in braces and we get:
$ \Rightarrow \left( {{{3x - 3}}} \right){{sinx + }}\left( {{{2 + 2x}}} \right)\cos x{{ + C}}$
$ \Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C}}$
Comparing this equation with the right-hand side of the equation $\int {\left[ {\left( {3x - 1} \right)\cos x + \left( {1 - 2x} \right)\sin x} \right]dx = f\left( x \right)\cos x + g\left( x \right) + c} $, we get:
$ \Rightarrow \left( {{{2 + 2x}}} \right)\cos x{{ + }}\left( {{{3x - 3}}} \right){{sinx}} + {{C = }}f\left( x \right)\cos x + g\left( x \right) + c$
This shows
$f\left( x \right) = \left( {2 + 2x} \right) = 2\left( {1 + x} \right)$
$g\left( x \right) = \left( {3x - 3} \right) = 3\left( {x - 1} \right)$
So, the correct answer is “Option C”.
Note: It’s important to remember the formulas of differentiation and integration to solve this type of question.
We have taken $C_1 + C_2 = C_1$ and other also the same because the sum of two constant terms will also be a constant term.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

