
If \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]exists, find the value of \[a,b,c\] Also find the limit.
Answer
590.7k+ views
Hint: Apply L-Hospital’s rule, it tells us that if we have an indeterminate form i.e $\dfrac{0}{0}$ or $\dfrac{\infty}{\infty}$ all we have to do is to differentiate the numerator and the denominator and then take the limits. L hospitals are applicable only if the value of f and g are 0, where f and g are defined as functions.
In this question we also have to apply the Maclaurin series theorem to substitute the value of \[\sin x,\cos x\] and \[{e^x}\] where Maclaurin series is a power series that is used to calculate an approximation of a function f(0) for input values close to zero, only if one knows the successive derivative of the function at zero.
Maclaurin series is a special case series of Taylor’s series, Maclaurin series can be written as
\[\sum\limits_{n = 0}^\infty {{f^{\left( n \right)}}\left( 0 \right)\dfrac{{{x^n}}}{{n!}} = f\left( 0 \right) + f'\left( 0 \right)x} + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + ........ + \dfrac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} + ....\]
Complete step by step answer:
We have to find the value of a, b, c from the limit function \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Hence we can write the limit as:
\[l = {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Now using Maclaurin series, we know the value of \[\sin x\], \[\cos x\]and \[{e^x}\] at the limit \[x \to 0\]
\[\sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......\]
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......\]
\[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........\]
Now by substituting these values in the limit function, we can write
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{a + b\left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......} \right) - \left( {1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......} \right) + c\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........} \right)}}{{{x^3}}}} \right] \\
\]
Now from the limit function find the sum of constant terms; hence we can write
\[
a - 1 + c = 0 \\
a + c = 1 - - - (i) \\
\]
Now find the sum of the coefficient of \[x\]
\[b + c = 0 - - - (ii)\]
And for the coefficient of \[{x^2}\]
\[
\dfrac{1}{2} + \dfrac{c}{2} = 0 \\
c = - 1 \\
\]
Hence substitute the value of \[c = - 1\] in equations (i) and (ii), we get the values
\[
a = 2 \\
b = 1 \\
c = - 1 \\
\]
Now let’s find the value of limit using L-Hospital’s rule, differentiate numerator and denominator
\[
{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}} = a - 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{b\cos x + \sin x + c{e^x}}}{{3{x^2}}} = b + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\sin x + \cos x + c{e^x}}}{{6x}} = 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\cos x - \sin x + c{e^x}}}{6} = \dfrac{{ - b + c}}{6} \\
\]
Hence by substituting the value of \[b = 1\] and \[c = - 1\] we get the value of the limit
\[\dfrac{{ - b + c}}{6} = \dfrac{{ - 1 + \left( { - 1} \right)}}{6} = \dfrac{{ - 2}}{6} = - \dfrac{1}{3}\] is the value of the limit.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution.
In this question we also have to apply the Maclaurin series theorem to substitute the value of \[\sin x,\cos x\] and \[{e^x}\] where Maclaurin series is a power series that is used to calculate an approximation of a function f(0) for input values close to zero, only if one knows the successive derivative of the function at zero.
Maclaurin series is a special case series of Taylor’s series, Maclaurin series can be written as
\[\sum\limits_{n = 0}^\infty {{f^{\left( n \right)}}\left( 0 \right)\dfrac{{{x^n}}}{{n!}} = f\left( 0 \right) + f'\left( 0 \right)x} + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + ........ + \dfrac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} + ....\]
Complete step by step answer:
We have to find the value of a, b, c from the limit function \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Hence we can write the limit as:
\[l = {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Now using Maclaurin series, we know the value of \[\sin x\], \[\cos x\]and \[{e^x}\] at the limit \[x \to 0\]
\[\sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......\]
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......\]
\[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........\]
Now by substituting these values in the limit function, we can write
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{a + b\left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......} \right) - \left( {1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......} \right) + c\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........} \right)}}{{{x^3}}}} \right] \\
\]
Now from the limit function find the sum of constant terms; hence we can write
\[
a - 1 + c = 0 \\
a + c = 1 - - - (i) \\
\]
Now find the sum of the coefficient of \[x\]
\[b + c = 0 - - - (ii)\]
And for the coefficient of \[{x^2}\]
\[
\dfrac{1}{2} + \dfrac{c}{2} = 0 \\
c = - 1 \\
\]
Hence substitute the value of \[c = - 1\] in equations (i) and (ii), we get the values
\[
a = 2 \\
b = 1 \\
c = - 1 \\
\]
Now let’s find the value of limit using L-Hospital’s rule, differentiate numerator and denominator
\[
{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}} = a - 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{b\cos x + \sin x + c{e^x}}}{{3{x^2}}} = b + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\sin x + \cos x + c{e^x}}}{{6x}} = 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\cos x - \sin x + c{e^x}}}{6} = \dfrac{{ - b + c}}{6} \\
\]
Hence by substituting the value of \[b = 1\] and \[c = - 1\] we get the value of the limit
\[\dfrac{{ - b + c}}{6} = \dfrac{{ - 1 + \left( { - 1} \right)}}{6} = \dfrac{{ - 2}}{6} = - \dfrac{1}{3}\] is the value of the limit.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

