
If \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]exists, find the value of \[a,b,c\] Also find the limit.
Answer
579k+ views
Hint: Apply L-Hospital’s rule, it tells us that if we have an indeterminate form i.e $\dfrac{0}{0}$ or $\dfrac{\infty}{\infty}$ all we have to do is to differentiate the numerator and the denominator and then take the limits. L hospitals are applicable only if the value of f and g are 0, where f and g are defined as functions.
In this question we also have to apply the Maclaurin series theorem to substitute the value of \[\sin x,\cos x\] and \[{e^x}\] where Maclaurin series is a power series that is used to calculate an approximation of a function f(0) for input values close to zero, only if one knows the successive derivative of the function at zero.
Maclaurin series is a special case series of Taylor’s series, Maclaurin series can be written as
\[\sum\limits_{n = 0}^\infty {{f^{\left( n \right)}}\left( 0 \right)\dfrac{{{x^n}}}{{n!}} = f\left( 0 \right) + f'\left( 0 \right)x} + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + ........ + \dfrac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} + ....\]
Complete step by step answer:
We have to find the value of a, b, c from the limit function \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Hence we can write the limit as:
\[l = {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Now using Maclaurin series, we know the value of \[\sin x\], \[\cos x\]and \[{e^x}\] at the limit \[x \to 0\]
\[\sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......\]
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......\]
\[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........\]
Now by substituting these values in the limit function, we can write
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{a + b\left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......} \right) - \left( {1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......} \right) + c\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........} \right)}}{{{x^3}}}} \right] \\
\]
Now from the limit function find the sum of constant terms; hence we can write
\[
a - 1 + c = 0 \\
a + c = 1 - - - (i) \\
\]
Now find the sum of the coefficient of \[x\]
\[b + c = 0 - - - (ii)\]
And for the coefficient of \[{x^2}\]
\[
\dfrac{1}{2} + \dfrac{c}{2} = 0 \\
c = - 1 \\
\]
Hence substitute the value of \[c = - 1\] in equations (i) and (ii), we get the values
\[
a = 2 \\
b = 1 \\
c = - 1 \\
\]
Now let’s find the value of limit using L-Hospital’s rule, differentiate numerator and denominator
\[
{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}} = a - 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{b\cos x + \sin x + c{e^x}}}{{3{x^2}}} = b + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\sin x + \cos x + c{e^x}}}{{6x}} = 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\cos x - \sin x + c{e^x}}}{6} = \dfrac{{ - b + c}}{6} \\
\]
Hence by substituting the value of \[b = 1\] and \[c = - 1\] we get the value of the limit
\[\dfrac{{ - b + c}}{6} = \dfrac{{ - 1 + \left( { - 1} \right)}}{6} = \dfrac{{ - 2}}{6} = - \dfrac{1}{3}\] is the value of the limit.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution.
In this question we also have to apply the Maclaurin series theorem to substitute the value of \[\sin x,\cos x\] and \[{e^x}\] where Maclaurin series is a power series that is used to calculate an approximation of a function f(0) for input values close to zero, only if one knows the successive derivative of the function at zero.
Maclaurin series is a special case series of Taylor’s series, Maclaurin series can be written as
\[\sum\limits_{n = 0}^\infty {{f^{\left( n \right)}}\left( 0 \right)\dfrac{{{x^n}}}{{n!}} = f\left( 0 \right) + f'\left( 0 \right)x} + \dfrac{{f''\left( 0 \right)}}{{2!}}{x^2} + ........ + \dfrac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} + ....\]
Complete step by step answer:
We have to find the value of a, b, c from the limit function \[{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Hence we can write the limit as:
\[l = {\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}\]
Now using Maclaurin series, we know the value of \[\sin x\], \[\cos x\]and \[{e^x}\] at the limit \[x \to 0\]
\[\sin x = x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......\]
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......\]
\[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........\]
Now by substituting these values in the limit function, we can write
\[
l = \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}}} \right) \\
= \mathop {\lim }\limits_{x \to 0} \left[ {\dfrac{{a + b\left( {x - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^5}}}{{5!}} - \dfrac{{{x^7}}}{{7!}} + .......} \right) - \left( {1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + .......} \right) + c\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ..........} \right)}}{{{x^3}}}} \right] \\
\]
Now from the limit function find the sum of constant terms; hence we can write
\[
a - 1 + c = 0 \\
a + c = 1 - - - (i) \\
\]
Now find the sum of the coefficient of \[x\]
\[b + c = 0 - - - (ii)\]
And for the coefficient of \[{x^2}\]
\[
\dfrac{1}{2} + \dfrac{c}{2} = 0 \\
c = - 1 \\
\]
Hence substitute the value of \[c = - 1\] in equations (i) and (ii), we get the values
\[
a = 2 \\
b = 1 \\
c = - 1 \\
\]
Now let’s find the value of limit using L-Hospital’s rule, differentiate numerator and denominator
\[
{\lim _{x \to 0}}\dfrac{{a + b\sin x - \cos x + c{e^x}}}{{{x^3}}} = a - 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{b\cos x + \sin x + c{e^x}}}{{3{x^2}}} = b + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\sin x + \cos x + c{e^x}}}{{6x}} = 1 + c = 0 \\
{\lim _{x \to 0}}\dfrac{{ - b\cos x - \sin x + c{e^x}}}{6} = \dfrac{{ - b + c}}{6} \\
\]
Hence by substituting the value of \[b = 1\] and \[c = - 1\] we get the value of the limit
\[\dfrac{{ - b + c}}{6} = \dfrac{{ - 1 + \left( { - 1} \right)}}{6} = \dfrac{{ - 2}}{6} = - \dfrac{1}{3}\] is the value of the limit.
Note: If the given function is in the indeterminate form of \[\dfrac{0}{0}\] then we apply the L-Hospital’s rule where we differentiate the numerator and the denominator of the function until we get a non-zero solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

