
If $\left| \overline{a} \right|=1$ , $\left| \overline{b} \right|=2$ , \[\left( \overline{a},\overline{b} \right)=\dfrac{2\pi }{3}\] then ${{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$ :
\[\begin{align}
& \text{1}.~~~\text{425} \\
& \text{2}.~~\text{375} \\
& \text{3}.~~~\text{325} \\
& \text{4}.~~~\text{3}00 \\
\end{align}\]
Answer
537.9k+ views
Hint: Here, for getting the value of the given question ${{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$ , first of all we will Do cross product within the bracket. After that we will simplify the cross product with the help of cross product formula that is $\overline{a}\times \overline{b}=\overline{a}.\overline{b}.\cos \left( \overline{a},\overline{b} \right)$ . Then we will square the bracket term and put the given values according to the situation.
Complete step by step answer:
Since, the given question that we need to solve is:
$\Rightarrow {{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$
Here, we will do cross product of the above equation as:
$\Rightarrow {{\left( \overline{a}\times 3\overline{a}+3\overline{b}\times 3\overline{a}+\overline{a}\times \overline{b}+3\overline{b}\times \overline{b} \right)}^{2}}$
We can write the multiplication of numbers in some terms as:
$\Rightarrow {{\left[ 3\left( \overline{a}\times \overline{a} \right)+9\left( \overline{b}\times \overline{a} \right)+\left( \overline{a}\times \overline{b} \right)+3\left( \overline{b}\times \overline{b} \right) \right]}^{2}}$
Now, we will expand the cross product into dot product with the use of the formula $\left( \overline{a}\times \overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right)$ as:
\[\Rightarrow {{\left[ 3\left( \left| \overline{a} \right|.\left| \overline{a} \right|\sin \left( \overline{a},\overline{a} \right) \right)+9\left( \left| \overline{b} \right|.\left| \overline{a} \right|\sin \left( \overline{b},\overline{a} \right) \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right) \right)+3\left( \left| \overline{b} \right|.\left| \overline{b} \right|\sin \left( \overline{b},\overline{b} \right) \right) \right]}^{2}}\]
Since, the angle between two vectors are given already but If the vectors are same, the angle between them is Zero and here, we can use the property of dot product \[\overline{b}.\overline{a}\sin \left( \overline{b},\overline{a} \right)=\overline{a}.\overline{b}\sin \left( \overline{a},\overline{b} \right)\] in the above step of the question as:
\[\Rightarrow {{\left[ 3\left( \left| \overline{a} \right|.\left| \overline{a} \right|\sin 0{}^\circ \right)+9\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{b},\overline{a} \right) \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right) \right)+3\left( \left| \overline{b} \right|.\left| \overline{b} \right|\sin 0{}^\circ \right) \right]}^{2}}\]
As we know that $\sin 0{}^\circ =0$ , we will have the above step as:
\[\Rightarrow {{\left[ 3.0+9\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right)+3.0 \right]}^{2}}\]
We can write the above step below as:
\[\Rightarrow {{\left[ 10\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right) \right]}^{2}}\]
Here, we already have the given value of the two vectors and the value of \[\sin \dfrac{2\pi }{3}\] is equal to \[\dfrac{\sqrt{3}}{2}\] . So, above equation will be as:
\[\Rightarrow {{\left[ 10\left( 1\times 2\times \dfrac{\sqrt{3}}{2} \right) \right]}^{2}}\]
Since, here the equal like number will be cancel out. Then the above equation can be written as below:
\[\Rightarrow {{\left[ 10\sqrt{3} \right]}^{2}}\]
Now, we will square the above term and will get:
\[\Rightarrow 100\times 3\]
The product of the above term will be:
\[\Rightarrow 300\]
Hence, after solving the question ${{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$ , we got \[300\]
Note: Since, the vector and dot product of two vectors are differently written. Here is formula of dot product that is $\left( \overline{a}.\overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\cos \left( \overline{a},\overline{b} \right)$ and the vector product is$\left( \overline{a}\times \overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right)$ , Where, $\left| \overline{a} \right|$ and $\left| \overline{b} \right|$ are magnitude of $\overline{a}$ and $\overline{b}$ respectively and $\left( \overline{a},\overline{b} \right)$ denotes angle between $\overline{a}$ and $\overline{b}$ .
Complete step by step answer:
Since, the given question that we need to solve is:
$\Rightarrow {{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$
Here, we will do cross product of the above equation as:
$\Rightarrow {{\left( \overline{a}\times 3\overline{a}+3\overline{b}\times 3\overline{a}+\overline{a}\times \overline{b}+3\overline{b}\times \overline{b} \right)}^{2}}$
We can write the multiplication of numbers in some terms as:
$\Rightarrow {{\left[ 3\left( \overline{a}\times \overline{a} \right)+9\left( \overline{b}\times \overline{a} \right)+\left( \overline{a}\times \overline{b} \right)+3\left( \overline{b}\times \overline{b} \right) \right]}^{2}}$
Now, we will expand the cross product into dot product with the use of the formula $\left( \overline{a}\times \overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right)$ as:
\[\Rightarrow {{\left[ 3\left( \left| \overline{a} \right|.\left| \overline{a} \right|\sin \left( \overline{a},\overline{a} \right) \right)+9\left( \left| \overline{b} \right|.\left| \overline{a} \right|\sin \left( \overline{b},\overline{a} \right) \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right) \right)+3\left( \left| \overline{b} \right|.\left| \overline{b} \right|\sin \left( \overline{b},\overline{b} \right) \right) \right]}^{2}}\]
Since, the angle between two vectors are given already but If the vectors are same, the angle between them is Zero and here, we can use the property of dot product \[\overline{b}.\overline{a}\sin \left( \overline{b},\overline{a} \right)=\overline{a}.\overline{b}\sin \left( \overline{a},\overline{b} \right)\] in the above step of the question as:
\[\Rightarrow {{\left[ 3\left( \left| \overline{a} \right|.\left| \overline{a} \right|\sin 0{}^\circ \right)+9\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{b},\overline{a} \right) \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right) \right)+3\left( \left| \overline{b} \right|.\left| \overline{b} \right|\sin 0{}^\circ \right) \right]}^{2}}\]
As we know that $\sin 0{}^\circ =0$ , we will have the above step as:
\[\Rightarrow {{\left[ 3.0+9\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right)+\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right)+3.0 \right]}^{2}}\]
We can write the above step below as:
\[\Rightarrow {{\left[ 10\left( \left| \overline{a} \right|.\left| \overline{b} \right|\sin \dfrac{2\pi }{3} \right) \right]}^{2}}\]
Here, we already have the given value of the two vectors and the value of \[\sin \dfrac{2\pi }{3}\] is equal to \[\dfrac{\sqrt{3}}{2}\] . So, above equation will be as:
\[\Rightarrow {{\left[ 10\left( 1\times 2\times \dfrac{\sqrt{3}}{2} \right) \right]}^{2}}\]
Since, here the equal like number will be cancel out. Then the above equation can be written as below:
\[\Rightarrow {{\left[ 10\sqrt{3} \right]}^{2}}\]
Now, we will square the above term and will get:
\[\Rightarrow 100\times 3\]
The product of the above term will be:
\[\Rightarrow 300\]
Hence, after solving the question ${{\left\{ \left( \overline{a}+3\overline{b} \right)\times \left( 3\overline{a}+\overline{b} \right) \right\}}^{2}}$ , we got \[300\]
Note: Since, the vector and dot product of two vectors are differently written. Here is formula of dot product that is $\left( \overline{a}.\overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\cos \left( \overline{a},\overline{b} \right)$ and the vector product is$\left( \overline{a}\times \overline{b} \right)=\left| \overline{a} \right|.\left| \overline{b} \right|\sin \left( \overline{a},\overline{b} \right)$ , Where, $\left| \overline{a} \right|$ and $\left| \overline{b} \right|$ are magnitude of $\overline{a}$ and $\overline{b}$ respectively and $\left( \overline{a},\overline{b} \right)$ denotes angle between $\overline{a}$ and $\overline{b}$ .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

