
If \[\left| \begin{matrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c \\
\end{matrix} \right|=0\], then using properties of determinants find the value of \[\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\], where \[x,y,z\ne 0\].
Answer
570k+ views
Hint: We simplify the given determinant by performing row operations \[{{R}_{2}}\to {{R}_{2}}-{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-{{R}_{1}}\] inside it. We then apply the definition of determinant to the terms present inside it. We then make necessary arrangements and divide the obtained expression with $xyz$ to get the desired value of \[\left( \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z} \right)\].
Complete step by step answer:
According to the problem, we are given a determinant \[\left| \begin{matrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c \\
\end{matrix} \right|=0\], we need to find the value of $\left( \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z} \right)$, where $x,y,z\ne 0$ using the properties of determinants.
We are asked to solve it by using the properties of determinants. Let us simplify the determinant, which is given to us.
\[\begin{matrix}
{{R}_{1}}\to \\
{{R}_{2}}\to \\
{{R}_{3}}\to \\
\end{matrix}\left| \begin{matrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c \\
\end{matrix} \right|=0\].
Let us write the expressions as,
Thus, by applying the conditions ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$, ${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$ we get the determinant as,
\[\left| \begin{matrix}
a & b-y & c-z \\
\left( a-x \right)-a & b-\left( b-y \right) & \left( c-z \right)-\left( c-z \right) \\
\left( a-x \right)-a & \left( b-y \right)-\left( b-y \right) & c-\left( c-z \right) \\
\end{matrix} \right|=0\].
Let us simplify the above,
\[\left| \begin{matrix}
a & b-y & c-z \\
-x & +y & 0 \\
-x & 0 & z \\
\end{matrix} \right|=0\] - (1).
Let us recall the definition of determinant which is defined below,
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-b\left( di-fg \right)+c\left( dh-eg \right)\].
We use this in equation (1).
\[\Rightarrow a\left( yz-0 \right)-\left( b-y \right)\left( -xz-0 \right)+\left( c-z \right)\left( +xy-0 \right)=0\].
\[\Rightarrow ayz+xz\left( b-y \right)+xy\left( c-z \right)=0\].
Now let us simplify the equation,
\[\Rightarrow ayz+bxz-xyz+xyc-xyz=0\].
\[\Rightarrow ayz+bxz+xyc=2xyz\].
Now let us divide the entire expression by xyz:
\[\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{xyc}{xyz}=\dfrac{2xyz}{xyz}\].
\[\Rightarrow \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\].
So, we got the required value of \[\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\].
Note: We need not always calculate the determinant in the given form as the determinant obtained will be long, complex and confusing. We can make use of row or column operations in order to simplify the terms in the determinant and make the process of solving the determinant easy. We should not make calculation mistakes while solving this problem.
Complete step by step answer:
According to the problem, we are given a determinant \[\left| \begin{matrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c \\
\end{matrix} \right|=0\], we need to find the value of $\left( \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z} \right)$, where $x,y,z\ne 0$ using the properties of determinants.
We are asked to solve it by using the properties of determinants. Let us simplify the determinant, which is given to us.
\[\begin{matrix}
{{R}_{1}}\to \\
{{R}_{2}}\to \\
{{R}_{3}}\to \\
\end{matrix}\left| \begin{matrix}
a & b-y & c-z \\
a-x & b & c-z \\
a-x & b-y & c \\
\end{matrix} \right|=0\].
Let us write the expressions as,
Thus, by applying the conditions ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$, ${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$ we get the determinant as,
\[\left| \begin{matrix}
a & b-y & c-z \\
\left( a-x \right)-a & b-\left( b-y \right) & \left( c-z \right)-\left( c-z \right) \\
\left( a-x \right)-a & \left( b-y \right)-\left( b-y \right) & c-\left( c-z \right) \\
\end{matrix} \right|=0\].
Let us simplify the above,
\[\left| \begin{matrix}
a & b-y & c-z \\
-x & +y & 0 \\
-x & 0 & z \\
\end{matrix} \right|=0\] - (1).
Let us recall the definition of determinant which is defined below,
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-b\left( di-fg \right)+c\left( dh-eg \right)\].
We use this in equation (1).
\[\Rightarrow a\left( yz-0 \right)-\left( b-y \right)\left( -xz-0 \right)+\left( c-z \right)\left( +xy-0 \right)=0\].
\[\Rightarrow ayz+xz\left( b-y \right)+xy\left( c-z \right)=0\].
Now let us simplify the equation,
\[\Rightarrow ayz+bxz-xyz+xyc-xyz=0\].
\[\Rightarrow ayz+bxz+xyc=2xyz\].
Now let us divide the entire expression by xyz:
\[\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{xyc}{xyz}=\dfrac{2xyz}{xyz}\].
\[\Rightarrow \dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\].
So, we got the required value of \[\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\].
Note: We need not always calculate the determinant in the given form as the determinant obtained will be long, complex and confusing. We can make use of row or column operations in order to simplify the terms in the determinant and make the process of solving the determinant easy. We should not make calculation mistakes while solving this problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

