
If $ {\left( {7 + 4\sqrt 3 } \right)^n} = p + \beta $ , where n and p are positive integers , and $ \beta $ a proper fraction, show that $ \left( {1 - \beta } \right)\left( {p + \beta } \right) = 1 $ .
Answer
585.3k+ views
Hint: To solve this question, we will use the concept of binomial theorem. According to the binomial theorem, the binomial expansion for any positive integer n is given by, $ {\left( {a + b} \right)^n}{ = ^n}{C_0}{a^n}{ + ^n}{C_1}{a^{n - 1}}{b^1}{ + ^n}{C_2}{a^{n - 2}}{b^2} + ..........{ + ^n}{C_n}{b^n}. $
Complete step-by-step answer:
Given that,
$ {\left( {7 + 4\sqrt 3 } \right)^n} = p + \beta $ . ………… (i)
Where n and p are positive integers and $ \beta $ a proper fraction.
We know that the binomial expansion for any positive integer n is given by,
$ {\left( {a + b} \right)^n}{ = ^n}{C_0}{a^n}{ + ^n}{C_1}{a^{n - 1}}{b^1}{ + ^n}{C_2}{a^{n - 2}}{b^2} + ..........{ + ^n}{C_n}{b^n}. $
Expanding the equation (i) using this, we will get
$ {\left( {7 + 4\sqrt 3 } \right)^n} = p + \beta { = ^n}{C_0}{7^n}{ + ^n}{C_1}{7^{n - 1}}4\sqrt 3 { + ^n}{C_2}{7^{n - 2}}{\left( {4\sqrt 3 } \right)^2} + ..........{ + ^n}{C_n}{\left( {4\sqrt 3 } \right)^n}. $ … (ii)
Let us take the value of $ \left( {7 - 4\sqrt 3 } \right) $ ,
$
\Rightarrow 0 < \left( {7 - 4\sqrt 3 } \right) < 1 \\
\Rightarrow 0 < \left( {0.0718} \right) < 1 \\
$
$ \left( {7 - 4\sqrt 3 } \right) $ is a fractional value which is less than 1 and greater than 0.
We will take $ {\left( {7 - 4\sqrt 3 } \right)^n} $ because n is a positive integer, if we take any value of n then the result will be a fraction.
Now,
$ {\left( {7 - 4\sqrt 3 } \right)^n} = \beta '(say) $
Now, we will expand this and get,
$ {\left( {7 - 4\sqrt 3 } \right)^n} = \beta '{ = ^n}{C_0}{7^n}{ - ^n}{C_1}{7^{n - 1}}4\sqrt 3 { + ^n}{C_2}{7^{n - 2}}{\left( {4\sqrt 3 } \right)^2} + ..........{ + ^n}{C_n}{\left( {4\sqrt 3 } \right)^n}. $ …….(iii)
Adding equation (ii) and (iii), we will get,
$ \Rightarrow {\left( {7 + 4\sqrt 3 } \right)^n} + {\left( {7 - 4\sqrt 3 } \right)^n} = p + \beta + \beta ' = 2\left\{ {^n{C_0}{7^n}{ + ^n}{C_2}{7^{n - 2}}{{\left( {4\sqrt 3 } \right)}^2}{ + ^n}{C_4}{7^{n - 4}}{{\left( {4\sqrt 3 } \right)}^4} + .......... + .} \right\} $
All the terms that are remaining are even terms.
Thus,
$ \left\{ {^n{C_0}{7^n}{ + ^n}{C_2}{7^{n - 2}}{{\left( {4\sqrt 3 } \right)}^2}{ + ^n}{C_4}{7^{n - 4}}{{\left( {4\sqrt 3 } \right)}^4} + .......... + .} \right\} = k $ , where k is an even integer.
Now,
$ \Rightarrow {\left( {7 + 4\sqrt 3 } \right)^n} + {\left( {7 - 4\sqrt 3 } \right)^n} = p + \beta + \beta ' = 2k $ .
So, we can say that,
$ \Rightarrow \beta + \beta ' = 2k - p = \operatorname{int} eger $ .
As we know that $ \beta $ is a proper fraction, so the range of $ \beta $ lies between 0 and 1.
i.e. $ 0 < \beta < 1 $ .
Similarly $ \beta ' $ is also a fraction integer, so its range will also lie between 0 and 1.
i.e. $ 0 < \beta ' < 1 $
if we add $ \beta $ and $ \beta ' $ , we will get
$
\Rightarrow 0 < \beta + \beta ' < 1 + 1 \\
\Rightarrow 0 < \beta + \beta ' < 2 \\
$
As we can see, the value of $ \beta + \beta ' $ lies between 0 and 2.
Thus, its integer value will be,
$ \Rightarrow \beta + \beta ' = 1 $ .
We can also write this as:
$ \Rightarrow \beta ' = 1 - \beta $ .
According to the question, we have to show that $ \left( {1 - \beta } \right)\left( {p + \beta } \right) = 1 $ .
Taking L.H.S.
$ \Rightarrow \left( {1 - \beta } \right)\left( {p + \beta } \right) = \beta '\left( {p + \beta } \right) $ .
Putting the values of $ \beta $ and $ \beta ' $ , we get
\[ \Rightarrow \beta '\left( {p + \beta } \right) = {\left( {7 - 4\sqrt 3 } \right)^n}{\left( {7 + 4\sqrt 3 } \right)^n}\].
Using the identity, $ {a^n}{b^n} = {\left( {a.b} \right)^n} $ , we can write this as,
\[ \Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right)} \right]^n}\].
Now, using identity, $ (a + b)(a - b) = {a^2} - {b^2} $ , we can write this as,
\[
\Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right)} \right]^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {49 - 48} \right)} \right]^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = {1^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = 1 \\
\]
Replacing the value of $ \beta ' $ , we get
$ \Rightarrow \left( {1 - \beta } \right)\left( {p + \beta } \right) = 1 $ .
Hence proved.
Note: Whenever we ask such questions, we have to know the method of binomial expansion. First we have to find out the given terms and then we will consider some values related to that term. Then we will expand them using binomial theorem. After that we will add their expansions and make an equation. After that we will solve that equation by considering the statements that are given in the question. Solving it step by step we will get the required answer.
Complete step-by-step answer:
Given that,
$ {\left( {7 + 4\sqrt 3 } \right)^n} = p + \beta $ . ………… (i)
Where n and p are positive integers and $ \beta $ a proper fraction.
We know that the binomial expansion for any positive integer n is given by,
$ {\left( {a + b} \right)^n}{ = ^n}{C_0}{a^n}{ + ^n}{C_1}{a^{n - 1}}{b^1}{ + ^n}{C_2}{a^{n - 2}}{b^2} + ..........{ + ^n}{C_n}{b^n}. $
Expanding the equation (i) using this, we will get
$ {\left( {7 + 4\sqrt 3 } \right)^n} = p + \beta { = ^n}{C_0}{7^n}{ + ^n}{C_1}{7^{n - 1}}4\sqrt 3 { + ^n}{C_2}{7^{n - 2}}{\left( {4\sqrt 3 } \right)^2} + ..........{ + ^n}{C_n}{\left( {4\sqrt 3 } \right)^n}. $ … (ii)
Let us take the value of $ \left( {7 - 4\sqrt 3 } \right) $ ,
$
\Rightarrow 0 < \left( {7 - 4\sqrt 3 } \right) < 1 \\
\Rightarrow 0 < \left( {0.0718} \right) < 1 \\
$
$ \left( {7 - 4\sqrt 3 } \right) $ is a fractional value which is less than 1 and greater than 0.
We will take $ {\left( {7 - 4\sqrt 3 } \right)^n} $ because n is a positive integer, if we take any value of n then the result will be a fraction.
Now,
$ {\left( {7 - 4\sqrt 3 } \right)^n} = \beta '(say) $
Now, we will expand this and get,
$ {\left( {7 - 4\sqrt 3 } \right)^n} = \beta '{ = ^n}{C_0}{7^n}{ - ^n}{C_1}{7^{n - 1}}4\sqrt 3 { + ^n}{C_2}{7^{n - 2}}{\left( {4\sqrt 3 } \right)^2} + ..........{ + ^n}{C_n}{\left( {4\sqrt 3 } \right)^n}. $ …….(iii)
Adding equation (ii) and (iii), we will get,
$ \Rightarrow {\left( {7 + 4\sqrt 3 } \right)^n} + {\left( {7 - 4\sqrt 3 } \right)^n} = p + \beta + \beta ' = 2\left\{ {^n{C_0}{7^n}{ + ^n}{C_2}{7^{n - 2}}{{\left( {4\sqrt 3 } \right)}^2}{ + ^n}{C_4}{7^{n - 4}}{{\left( {4\sqrt 3 } \right)}^4} + .......... + .} \right\} $
All the terms that are remaining are even terms.
Thus,
$ \left\{ {^n{C_0}{7^n}{ + ^n}{C_2}{7^{n - 2}}{{\left( {4\sqrt 3 } \right)}^2}{ + ^n}{C_4}{7^{n - 4}}{{\left( {4\sqrt 3 } \right)}^4} + .......... + .} \right\} = k $ , where k is an even integer.
Now,
$ \Rightarrow {\left( {7 + 4\sqrt 3 } \right)^n} + {\left( {7 - 4\sqrt 3 } \right)^n} = p + \beta + \beta ' = 2k $ .
So, we can say that,
$ \Rightarrow \beta + \beta ' = 2k - p = \operatorname{int} eger $ .
As we know that $ \beta $ is a proper fraction, so the range of $ \beta $ lies between 0 and 1.
i.e. $ 0 < \beta < 1 $ .
Similarly $ \beta ' $ is also a fraction integer, so its range will also lie between 0 and 1.
i.e. $ 0 < \beta ' < 1 $
if we add $ \beta $ and $ \beta ' $ , we will get
$
\Rightarrow 0 < \beta + \beta ' < 1 + 1 \\
\Rightarrow 0 < \beta + \beta ' < 2 \\
$
As we can see, the value of $ \beta + \beta ' $ lies between 0 and 2.
Thus, its integer value will be,
$ \Rightarrow \beta + \beta ' = 1 $ .
We can also write this as:
$ \Rightarrow \beta ' = 1 - \beta $ .
According to the question, we have to show that $ \left( {1 - \beta } \right)\left( {p + \beta } \right) = 1 $ .
Taking L.H.S.
$ \Rightarrow \left( {1 - \beta } \right)\left( {p + \beta } \right) = \beta '\left( {p + \beta } \right) $ .
Putting the values of $ \beta $ and $ \beta ' $ , we get
\[ \Rightarrow \beta '\left( {p + \beta } \right) = {\left( {7 - 4\sqrt 3 } \right)^n}{\left( {7 + 4\sqrt 3 } \right)^n}\].
Using the identity, $ {a^n}{b^n} = {\left( {a.b} \right)^n} $ , we can write this as,
\[ \Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {7 - 4\sqrt 3 } \right)\left( {7 + 4\sqrt 3 } \right)} \right]^n}\].
Now, using identity, $ (a + b)(a - b) = {a^2} - {b^2} $ , we can write this as,
\[
\Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {{7^2} - {{\left( {4\sqrt 3 } \right)}^2}} \right)} \right]^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = {\left[ {\left( {49 - 48} \right)} \right]^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = {1^n} \\
\Rightarrow \beta '\left( {p + \beta } \right) = 1 \\
\]
Replacing the value of $ \beta ' $ , we get
$ \Rightarrow \left( {1 - \beta } \right)\left( {p + \beta } \right) = 1 $ .
Hence proved.
Note: Whenever we ask such questions, we have to know the method of binomial expansion. First we have to find out the given terms and then we will consider some values related to that term. Then we will expand them using binomial theorem. After that we will add their expansions and make an equation. After that we will solve that equation by considering the statements that are given in the question. Solving it step by step we will get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

