
If ${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} + {\left( {5 - 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 10$ , the $x$ is equal to
(A). $ \pm 3$ or \[ \pm \sqrt 3 \]
(B). $ \pm 5$ or \[\sqrt 5 \]
(C). $ \pm 4$ or \[\sqrt 4 \]
(D). $ \pm 2$ or \[ \pm \sqrt 2 \]
Answer
575.1k+ views
Hint: In the solution we will use rationalization and substitution methods. The concept of the rationalization method is to remove the radical symbols or any number in the denominator.
Complete Step-by-step Solution
Given: ${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} + {\left( {5 - 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 10$
We will rationalizing $\left( {5 - 2\sqrt 6 } \right)$ by dividing and multiplying by $\left( {5 - 2\sqrt 6 } \right)$, we get the value gives as,
$\begin{array}{c}
{\left[ {\left( {5 - 2\sqrt 6 } \right)\dfrac{{\left( {5 + 2\sqrt 6 } \right)}}{{\left( {5 + 2\sqrt 6 } \right)}}} \right]^{\left( {{x^2} - 3} \right)}} = \dfrac{{25 - 24}}{{\left( {5 + 2\sqrt 6 } \right)}}\\
= {\left( {\dfrac{1}{{5 + 2\sqrt 6 }}} \right)^{\left( {{x^2} - 3} \right)}}
\end{array}$
Now, on putting the value of $\left( {5 - 2\sqrt 6 } \right)$ in the above expression, we will get,
${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} + {\left( {\dfrac{1}{{\left( {5 + 2\sqrt 6 } \right)}}} \right)^{\left( {{x^2} - 3} \right)}} = 10$
Let us assume that \[{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = t\], then we have,
$\begin{array}{c}
t + \dfrac{1}{t} = 10\\
{t^2} - 10t + 1 = 0
\end{array}$
On solving the quadratic equation ${t^2} - 10t + 1 = 0$, we will get the value as,
$\begin{array}{c}
t = \dfrac{{10 \pm \sqrt {100 - 4} }}{2}\\
t = \dfrac{{10 \pm \sqrt {96} }}{2}\\
t = \dfrac{{10 \pm 4\sqrt 6 }}{2}\\
t = 5 \pm 2\sqrt 6
\end{array}$
Therefore, we can say that the roots of the quadratic equation ${t^2} - 10t + 1 = 0$ are $5 + 2\sqrt 6 $ and $5 - 2\sqrt 6 $.
On simplifying the roots of the equation, we get,
${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 5 + 2\sqrt 6 $
On comparing the powers of both the sides of the above expression, we get,
$\begin{array}{c}
{x^2} - 3 = 1\\
{x^2} = 4\\
x = \pm 2
\end{array}$
Also, again simplifying the roots of the equation, we get,
$\begin{array}{c}
{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 5 - 2\sqrt 6 \\
{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = {\left( {5 + 2\sqrt 6 } \right)^{ - 1}}
\end{array}$
On comparing the powers of both the sides of the above expression, we get,
$\begin{array}{l}
{x^2} - 3 = - 1\\
{x^2} = - 4\\
x = \pm \sqrt 2
\end{array}$
Therefore, the correct option is (D) that is $ \pm 2$ or \[ \pm \sqrt 2 \].
Note: Make sure to use a rationalization method when you will see this type of questions. The tricky part is comparing the powers of the equations.
Complete Step-by-step Solution
Given: ${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} + {\left( {5 - 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 10$
We will rationalizing $\left( {5 - 2\sqrt 6 } \right)$ by dividing and multiplying by $\left( {5 - 2\sqrt 6 } \right)$, we get the value gives as,
$\begin{array}{c}
{\left[ {\left( {5 - 2\sqrt 6 } \right)\dfrac{{\left( {5 + 2\sqrt 6 } \right)}}{{\left( {5 + 2\sqrt 6 } \right)}}} \right]^{\left( {{x^2} - 3} \right)}} = \dfrac{{25 - 24}}{{\left( {5 + 2\sqrt 6 } \right)}}\\
= {\left( {\dfrac{1}{{5 + 2\sqrt 6 }}} \right)^{\left( {{x^2} - 3} \right)}}
\end{array}$
Now, on putting the value of $\left( {5 - 2\sqrt 6 } \right)$ in the above expression, we will get,
${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} + {\left( {\dfrac{1}{{\left( {5 + 2\sqrt 6 } \right)}}} \right)^{\left( {{x^2} - 3} \right)}} = 10$
Let us assume that \[{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = t\], then we have,
$\begin{array}{c}
t + \dfrac{1}{t} = 10\\
{t^2} - 10t + 1 = 0
\end{array}$
On solving the quadratic equation ${t^2} - 10t + 1 = 0$, we will get the value as,
$\begin{array}{c}
t = \dfrac{{10 \pm \sqrt {100 - 4} }}{2}\\
t = \dfrac{{10 \pm \sqrt {96} }}{2}\\
t = \dfrac{{10 \pm 4\sqrt 6 }}{2}\\
t = 5 \pm 2\sqrt 6
\end{array}$
Therefore, we can say that the roots of the quadratic equation ${t^2} - 10t + 1 = 0$ are $5 + 2\sqrt 6 $ and $5 - 2\sqrt 6 $.
On simplifying the roots of the equation, we get,
${\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 5 + 2\sqrt 6 $
On comparing the powers of both the sides of the above expression, we get,
$\begin{array}{c}
{x^2} - 3 = 1\\
{x^2} = 4\\
x = \pm 2
\end{array}$
Also, again simplifying the roots of the equation, we get,
$\begin{array}{c}
{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = 5 - 2\sqrt 6 \\
{\left( {5 + 2\sqrt 6 } \right)^{\left( {{x^2} - 3} \right)}} = {\left( {5 + 2\sqrt 6 } \right)^{ - 1}}
\end{array}$
On comparing the powers of both the sides of the above expression, we get,
$\begin{array}{l}
{x^2} - 3 = - 1\\
{x^2} = - 4\\
x = \pm \sqrt 2
\end{array}$
Therefore, the correct option is (D) that is $ \pm 2$ or \[ \pm \sqrt 2 \].
Note: Make sure to use a rationalization method when you will see this type of questions. The tricky part is comparing the powers of the equations.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


