
If ${{\left( 1+i \right)}^{-20}}=a+ib$, then the values of a and b are
[a] $a={{2}^{-10}},b=-{{2}^{-10}}$
[b] $a=-{{2}^{-10}},b=0$
[c] $a={{2}^{-10}},b=0$
[d] None of the above.
Answer
611.7k+ views
Hint: convert $1+i$ in polar form, i.e. $r\left( \cos x+i\sin x \right)$ form and use De-Movire's formula, i.e. ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx,n\in \mathbb{Z}$. Alternatively, use Euler's identity, i.e. ${{e}^{ix}}=\cos x+i\sin x$ to simplify the expression. Use the fact that $\cos \left( \dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$.
Hence find the value of the above expression.
Complete step-by-step answer:
Conversion of a complex number to polar form:
Consider the complex number $x+iy$
Step 1 : Divide and multiply by $\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$
$x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+i\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}} \right)$
Step 2: $\theta =\arctan \left( \dfrac{y}{x} \right)$
Check whether $\cos \theta =\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ and $\sin \theta =\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ or $\cos \left( \pi -\theta \right)=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ and $\sin \left( \pi -\theta \right)=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$
Step 3: If $\theta $ satisfies, then $x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \cos \theta +i\sin \theta \right)$ else $x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \cos \left( \pi -\theta \right)+i\sin \left( \pi -\theta \right) \right)$
Hence the given complex number is converted in polar form.
We have $\left| 1+i \right|=\sqrt{2}$
Hence $1+i=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right)$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}=\sin \left( \dfrac{\pi }{4} \right)$
Hence, we have
Now, we have
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2}\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right) \right)}^{-20}}$
We know that ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$. Hence we have
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}{{\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)}^{-20}}$
We know that ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx,n\in \mathbb{Z}$
Hence we have
${{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{-20}}=\cos \left( \dfrac{\pi \left( -20 \right)}{4} \right)+i\sin \left( \dfrac{\pi }{4}\left( -20 \right) \right)=\cos \left( -5\pi \right)+i\sin \left( -5\pi \right)$
We know that $\cos \left( -x \right)=\cos x$ and $\sin \left( -x \right)=-\sin x$. Hence we have
${{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{-20}}=\cos 5\pi -i\sin 5\pi =\cos \pi -i\sin \pi =-1$
Hence ${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}\left( -1 \right)=-{{2}^{-10}}$
Hence we have
$a+ib=-{{2}^{-10}}$
Comparing real to real and imaginary to imaginary, we get
$a=-{{2}^{-10}}$ and $b=0$
Hence option [b] is correct.
Note: [1] Alternative solution:
$1+i=\sqrt{2}\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)$
We know that $\cos x+i\sin x={{e}^{ix}}$
Put $x=\dfrac{\pi }{4}$ in the above formula, we get
$\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}={{e}^{\dfrac{i\pi }{4}}}$
Hence we have
$1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$
Raising power to -20 on both sides, we get
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}{{e}^{-i5\pi }}$
We know that ${{e}^{i4\pi }}=1$ and ${{e}^{i\pi }}=-1$.
Hence we have
${{\left( 1+i \right)}^{-20}}=-{{2}^{-10}}$, which is the same as obtained above.
Hence option [b] is correct.
[2] Alternative solution:
We know that $\left| {{z}^{n}} \right|={{\left| z \right|}^{n}}$ and $\arg \left( {{z}^{n}} \right)=n\arg \left( z \right)$
Hence we have $\left| {{\left( 1+i \right)}^{-20}} \right|={{\left( \sqrt{2} \right)}^{-20}}={{2}^{-10}}$ and $\arg \left( {{\left( 1+i \right)}^{-20}} \right)=-20\arg \left( 1+i \right)=-20\dfrac{\pi }{4}=-5\pi $
We know that $z=\left| z \right|\left( \cos \left( \arg z \right)+i\sin \left( \arg z \right) \right)$
Hence we have
${{\left( 1+i \right)}^{-20}}={{2}^{-10}}\left( \cos \left( -5\pi \right)+i\sin \left( -5\pi \right) \right)=-{{2}^{-10}}$, which is the same as obtained above.
Hence option [b] is correct.
Hence find the value of the above expression.
Complete step-by-step answer:
Conversion of a complex number to polar form:
Consider the complex number $x+iy$
Step 1 : Divide and multiply by $\left| x+iy \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$
$x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}+i\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}} \right)$
Step 2: $\theta =\arctan \left( \dfrac{y}{x} \right)$
Check whether $\cos \theta =\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ and $\sin \theta =\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ or $\cos \left( \pi -\theta \right)=\dfrac{x}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$ and $\sin \left( \pi -\theta \right)=\dfrac{y}{\sqrt{{{x}^{2}}+{{y}^{2}}}}$
Step 3: If $\theta $ satisfies, then $x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \cos \theta +i\sin \theta \right)$ else $x+iy=\sqrt{{{x}^{2}}+{{y}^{2}}}\left( \cos \left( \pi -\theta \right)+i\sin \left( \pi -\theta \right) \right)$
Hence the given complex number is converted in polar form.
We have $\left| 1+i \right|=\sqrt{2}$
Hence $1+i=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}+\dfrac{i}{\sqrt{2}} \right)$
We know that $\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}=\sin \left( \dfrac{\pi }{4} \right)$
Hence, we have
Now, we have
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2}\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right) \right)}^{-20}}$
We know that ${{\left( ab \right)}^{n}}={{a}^{n}}{{b}^{n}}$. Hence we have
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}{{\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)}^{-20}}$
We know that ${{\left( \cos x+i\sin x \right)}^{n}}=\cos nx+i\sin nx,n\in \mathbb{Z}$
Hence we have
${{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{-20}}=\cos \left( \dfrac{\pi \left( -20 \right)}{4} \right)+i\sin \left( \dfrac{\pi }{4}\left( -20 \right) \right)=\cos \left( -5\pi \right)+i\sin \left( -5\pi \right)$
We know that $\cos \left( -x \right)=\cos x$ and $\sin \left( -x \right)=-\sin x$. Hence we have
${{\left( \cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4} \right)}^{-20}}=\cos 5\pi -i\sin 5\pi =\cos \pi -i\sin \pi =-1$
Hence ${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}\left( -1 \right)=-{{2}^{-10}}$
Hence we have
$a+ib=-{{2}^{-10}}$
Comparing real to real and imaginary to imaginary, we get
$a=-{{2}^{-10}}$ and $b=0$
Hence option [b] is correct.
Note: [1] Alternative solution:
$1+i=\sqrt{2}\left( \cos \left( \dfrac{\pi }{4} \right)+i\sin \left( \dfrac{\pi }{4} \right) \right)$
We know that $\cos x+i\sin x={{e}^{ix}}$
Put $x=\dfrac{\pi }{4}$ in the above formula, we get
$\cos \dfrac{\pi }{4}+i\sin \dfrac{\pi }{4}={{e}^{\dfrac{i\pi }{4}}}$
Hence we have
$1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}}$
Raising power to -20 on both sides, we get
${{\left( 1+i \right)}^{-20}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{-20}}={{\left( \sqrt{2} \right)}^{-20}}{{e}^{-i5\pi }}$
We know that ${{e}^{i4\pi }}=1$ and ${{e}^{i\pi }}=-1$.
Hence we have
${{\left( 1+i \right)}^{-20}}=-{{2}^{-10}}$, which is the same as obtained above.
Hence option [b] is correct.
[2] Alternative solution:
We know that $\left| {{z}^{n}} \right|={{\left| z \right|}^{n}}$ and $\arg \left( {{z}^{n}} \right)=n\arg \left( z \right)$
Hence we have $\left| {{\left( 1+i \right)}^{-20}} \right|={{\left( \sqrt{2} \right)}^{-20}}={{2}^{-10}}$ and $\arg \left( {{\left( 1+i \right)}^{-20}} \right)=-20\arg \left( 1+i \right)=-20\dfrac{\pi }{4}=-5\pi $
We know that $z=\left| z \right|\left( \cos \left( \arg z \right)+i\sin \left( \arg z \right) \right)$
Hence we have
${{\left( 1+i \right)}^{-20}}={{2}^{-10}}\left( \cos \left( -5\pi \right)+i\sin \left( -5\pi \right) \right)=-{{2}^{-10}}$, which is the same as obtained above.
Hence option [b] is correct.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

