
If \[L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\], then \[b = \]
Answer
573.6k+ views
Hint: We will assume that \[LCM\left\{ {102,103,..,200} \right\}\] to be \[x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\}\] to be \[y\]. We will simplify the equation and express \[b\] in terms of \[x\] and \[y\]. We will find the value of \[x\]and \[y\] using logic and the formula for the Least Common Multiple.
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE


