Answer
Verified
427.8k+ views
Hint: We will assume that \[LCM\left\{ {102,103,..,200} \right\}\] to be \[x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\}\] to be \[y\]. We will simplify the equation and express \[b\] in terms of \[x\] and \[y\]. We will find the value of \[x\]and \[y\] using logic and the formula for the Least Common Multiple.
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Formulas used:We will use the formula \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\].
Complete step-by-step answer:
The L.C.M. of 2 or more numbers is the least common multiple of those numbers.
We have the equation
\[ \Rightarrow L.C.M.\left\{ {1,2,3, \ldots ,200} \right\} = b \times L.C.M.\left\{ {102,103,...,200} \right\}\]
On dividing both sides by \[L.C.M.\left\{ {102,103,...,200} \right\}\], we get
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = \dfrac{{b \times L.C.M.\left\{ {102,103,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}}\]
\[ \Rightarrow \dfrac{{L.C.M.\left\{ {1,2,3, \ldots ,99,100,101,102,...,200} \right\}}}{{L.C.M.\left\{ {102,103,...,200} \right\}}} = b\left( * \right)\]
We will assume that \[LCM\left\{ {102,103,..,200} \right\} = x\] and \[LCM\left\{ {1,2,3,...,99,100,101,102,...,200} \right\} = y\] .
We know that some or other multiple of all the numbers lying between 1 and 100 will lie between 101 and 200. For example, the \[{51^{th}}\] multiple of 2 is 102 and it lies between 101 and 200, the 4th multiple of 30 is 120 and it lies between 101 and 200, the 2nd multiple of 99 is 198 and lies between 192 and 200…and so on.
So, we can safely say that
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = L.C.M.\left\{ {101,102,103,...,200} \right\}{\rm{ }}\left( 1 \right)\]
We know that \[LCM\left\{ {a,b,c} \right\} = LCM\left\{ {c,LCM\left\{ {a,b} \right\}} \right\}\], so \[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,LCM\left\{ {102,103,..,200} \right\}} \right\}\]
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = LCM\left\{ {101,x} \right\}{\rm{ }}\left( 2 \right)\]
101 is a prime number and no multiple of 101 lies between 102 and 200. So,
\[ \Rightarrow L.C.M.\left\{ {101,y} \right\} = 101 \times x{\rm{ }}\left( 3 \right)\]
We will substitute equation (1) in equation (2):
\[ \Rightarrow L.C.M.\left\{ {101,102,103,...,200} \right\} = 101x{\rm{ }}\left( 4 \right)\]
We will substitute equation (4) in equation (1)
\[ \Rightarrow L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\} = 101x\]
We will substitute \[101x\] for \[L.C.M.{\rm{ }}\left\{ {1,{\rm{ }}2,{\rm{ }}3, \ldots ,{\rm{ 200}}} \right\}\] and \[x\] for \[LCM\left\{ {102,103,..,200} \right\}\] in equation (*):
\[ \Rightarrow \dfrac{{101x}}{x} = b\]
\[ \Rightarrow 101 = b\]
\[\therefore\] The value of \[b\] is 101.
Note: The least common multiple of 2 numbers is the absolute value of their product divided by their greatest common divisor:
\[LCM\left( {ab} \right) = \dfrac{{\left| {ab} \right|}}{{\gcd \left( {a,b} \right)}}\]. The Least Common Multiple of a prime number (say \[p\]) with another number (say \[q\] )that is not its multiple is the product of the 2 numbers (\[pq\])
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE