
If l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$.
Answer
592.2k+ views
Hint: In question, we have to prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$ and only know information in question is that l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) . we will form given equation into required equation by substitution of other fraction and by dividing whole equation by lmn.
Complete step-by-step solution:
In vector, l, m, and n represent direction cosines of a vector along the x-axis, y-axis, and z-axis respectively, and the relation between direction cosines l, m, and n are represented as ${{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1$.
Now, in question it is given that l , m and n are direction cosines of a vector along x – axis , y – axis and z – axis respectively and let x , and z be any point on vector plane , then there is relation l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ), then we have to prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$.
Now, we have
l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) …………...…..( i )
Now, dividing equation ………..…...( i ) by lmn , we get
\[\dfrac{l\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{m\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{n\text{ }\left( \text{ }lx\text{ }+\text{ }my -\text{ }\text{ }nz\text{ } \right)}{lmn}\]
On solving, we get
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } - \text{ }lx\text{ } \right)\text{ }}{mn}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ }\right)\text{ }}{ln}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)}{lm}\]
As, all three fractions are same, which means all three fraction are of same ratio on simplification that is if we have $\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}$ then $\dfrac{a+c}{b+d}=\dfrac{c+e}{d+f}=\dfrac{e+a}{f+b}$, so we can write equation ( ii ) as ,
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ }-\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ }-\text{ }my\text{ } \right)\text{ }}{mn+nl}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ }- \text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)\text{ }}{ln+lm}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{lm+mn}\]
Taking common factors out, we get
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ } \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ } \text{ }nz\text{ } \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{m(l+n)}\]
Solving brackets in numerator, we get
\[\dfrac{\text{ }\left( \text{ 2}nz \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}lx \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}my \right)}{m(l+n)}\]
On simplifying fractions, we get
\[\dfrac{\text{ }\left( \text{ 2}z \right)\text{ }}{(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}x \right)\text{ }}{(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}y \right)}{(l+n)}\]
Adding and subtracting the fractions we get,
\[\dfrac{\text{ }\left( \text{ 2}z \right)\text{+}\left( \text{2}y \right)-\left( \text{ 2}x \right)\text{ }}{(m+l)+(l+n)-\left( n+m \right)}=\text{ }\dfrac{\text{ }\left( 2z \right)+\left( \text{ 2}x \right)-\left( 2y \right)\text{ }}{(m+l)+(n+m)-(l+n)}=\text{ }\dfrac{\left( 2x \right)+\left( \text{2}y \right)-\left( 2z \right)}{(l+n)+(n+m)-(l+m)}\]
On solving numerator and denominator of all three fractions, we get
\[\dfrac{2(z+y-x)}{2l}=\text{ }\dfrac{\text{ 2}\left( z+x-y \right)\text{ }}{2m}=\text{ }\dfrac{2\left( x+y-z \right)}{2n}\]
On simplifying fractions, we get
\[\dfrac{(z+y-x)}{l}=\text{ }\dfrac{\text{ }\left( z+x-y \right)\text{ }}{m}=\text{ }\dfrac{\left( x+y-z \right)}{n}\]
Hence, if l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$.
Note: In these types of questions we need to modify fractions in such a way that the resulting fraction in the simplest form and required form. Sometimes, the relation between l, m, and n that is ${{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1$is required so all concept must be remembered.
Complete step-by-step solution:
In vector, l, m, and n represent direction cosines of a vector along the x-axis, y-axis, and z-axis respectively, and the relation between direction cosines l, m, and n are represented as ${{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1$.
Now, in question it is given that l , m and n are direction cosines of a vector along x – axis , y – axis and z – axis respectively and let x , and z be any point on vector plane , then there is relation l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ), then we have to prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$.
Now, we have
l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) …………...…..( i )
Now, dividing equation ………..…...( i ) by lmn , we get
\[\dfrac{l\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{m\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{n\text{ }\left( \text{ }lx\text{ }+\text{ }my -\text{ }\text{ }nz\text{ } \right)}{lmn}\]
On solving, we get
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } - \text{ }lx\text{ } \right)\text{ }}{mn}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ }\right)\text{ }}{ln}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)}{lm}\]
As, all three fractions are same, which means all three fraction are of same ratio on simplification that is if we have $\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}$ then $\dfrac{a+c}{b+d}=\dfrac{c+e}{d+f}=\dfrac{e+a}{f+b}$, so we can write equation ( ii ) as ,
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ }-\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ }-\text{ }my\text{ } \right)\text{ }}{mn+nl}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ }- \text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)\text{ }}{ln+lm}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{lm+mn}\]
Taking common factors out, we get
\[\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ } \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ } \text{ }nz\text{ } \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{m(l+n)}\]
Solving brackets in numerator, we get
\[\dfrac{\text{ }\left( \text{ 2}nz \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}lx \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}my \right)}{m(l+n)}\]
On simplifying fractions, we get
\[\dfrac{\text{ }\left( \text{ 2}z \right)\text{ }}{(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}x \right)\text{ }}{(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}y \right)}{(l+n)}\]
Adding and subtracting the fractions we get,
\[\dfrac{\text{ }\left( \text{ 2}z \right)\text{+}\left( \text{2}y \right)-\left( \text{ 2}x \right)\text{ }}{(m+l)+(l+n)-\left( n+m \right)}=\text{ }\dfrac{\text{ }\left( 2z \right)+\left( \text{ 2}x \right)-\left( 2y \right)\text{ }}{(m+l)+(n+m)-(l+n)}=\text{ }\dfrac{\left( 2x \right)+\left( \text{2}y \right)-\left( 2z \right)}{(l+n)+(n+m)-(l+m)}\]
On solving numerator and denominator of all three fractions, we get
\[\dfrac{2(z+y-x)}{2l}=\text{ }\dfrac{\text{ 2}\left( z+x-y \right)\text{ }}{2m}=\text{ }\dfrac{2\left( x+y-z \right)}{2n}\]
On simplifying fractions, we get
\[\dfrac{(z+y-x)}{l}=\text{ }\dfrac{\text{ }\left( z+x-y \right)\text{ }}{m}=\text{ }\dfrac{\left( x+y-z \right)}{n}\]
Hence, if l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that $\dfrac{y+z-x}{l}=$ $\dfrac{z+x-y}{l}=$$\dfrac{x+y-z}{l}$.
Note: In these types of questions we need to modify fractions in such a way that the resulting fraction in the simplest form and required form. Sometimes, the relation between l, m, and n that is ${{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1$is required so all concept must be remembered.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

