
If it is given that $f:R\to R$ is a differentiable function such that $f\left( 0 \right)=0,f\left( \dfrac{\pi }{2} \right)=3\,and\,f'\left( 0 \right)=1$. If $g\left( x \right)=\int\limits_{x}^{\dfrac{\pi }{2}}{[f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}}.f\left( t \right)]dt\,\,for\,\,x\in \left( 0,\dfrac{\pi }{2} \right]$ then what will be the value of$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$?
Answer
509.1k+ views
Hint: To solve this problem we will apply the reverse of the product rule of the differentiation i.e.
the derivative of fg = f g’ + f’ g so also, f g’ + f’ g = (fg)’. After that we will apply the L’hospital’s rule,
It says that the limit when we divide one function by another is the same after we take the derivative of the each function, if the limit is of the form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$.
Complete step-by-step answer:
We are given that,
$f\left( 0 \right)=0,f\left( \dfrac{\pi }{2} \right)=3\,and\,f'\left( 0 \right)=1$, and
$g\left( x \right)=\int\limits_{x}^{\dfrac{\pi }{2}}{[f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}}.f\left( t \right)]dt\,\,for\,\,x\in \left( 0,\dfrac{\pi }{2} \right]$.
Now if we observe $f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)$ it is the derivative of $f\left( t \right).\operatorname{cosect}$, i.e. we get
$\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}=f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)$
Above shown equation we get is kind of reverse of the product rule of differentiation.
Now putting $f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)=\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}$ in the function g(x), we get
$g\left( x \right)=\int\limits_{x}^{\dfrac{\pi }{2}}{\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}dt}$
\[\begin{align}
& g\left( x \right)=\left[ \left( f\left( t \right).\operatorname{cosect} \right) \right]_{x}^{\dfrac{\pi }{2}} \\
& g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-f\left( x \right).\operatorname{cosec}x \\
\end{align}\]
Now we will find the limit $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$, as
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left( f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-f\left( x \right).\operatorname{cosec}x \right)$
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right).\operatorname{cosec}x$
As we know $\operatorname{cosec}x=\dfrac{1}{\sin x}$,
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{\sin x}$
Now limit $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{\sin x}$ is of the form $\dfrac{0}{0}$ because $f\left( 0 \right)=0$ is given, hence we can apply L’hospital’s rule here,
L’hospital says that if we have an indeterminate form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$, all we need to do is differentiate the numerator and differentiate the denominator and then take the limit. So applying the L’hospital’s rule, we get
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{\cos x}$
Now, putting the values $f\left( \dfrac{\pi }{2} \right)=3\,,f'\left( 0 \right)=1,\operatorname{cosec}\dfrac{\pi }{2}=1\,and\,\cos 0=1$, we get
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=3-1=2$
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=2$
Hence our answer for the value of the limit $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$ is 2.
Note: Students may make mistake while applying the L’hospital’s rule and may not check the form of the limit i.e. we can apply L’hospital’s rule only if the limit is of the form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$ else we cannot apply this rule. And you may also do not change \[\operatorname{cosec}t\] to $\dfrac{1}{\sin t}$ in the function g(x) and remain stuck in order to solve the limit so usually try to convert secant, cosecant to sine and cosine.
the derivative of fg = f g’ + f’ g so also, f g’ + f’ g = (fg)’. After that we will apply the L’hospital’s rule,
It says that the limit when we divide one function by another is the same after we take the derivative of the each function, if the limit is of the form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$.
Complete step-by-step answer:
We are given that,
$f\left( 0 \right)=0,f\left( \dfrac{\pi }{2} \right)=3\,and\,f'\left( 0 \right)=1$, and
$g\left( x \right)=\int\limits_{x}^{\dfrac{\pi }{2}}{[f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}}.f\left( t \right)]dt\,\,for\,\,x\in \left( 0,\dfrac{\pi }{2} \right]$.
Now if we observe $f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)$ it is the derivative of $f\left( t \right).\operatorname{cosect}$, i.e. we get
$\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}=f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)$
Above shown equation we get is kind of reverse of the product rule of differentiation.
Now putting $f'\left( t \right)\operatorname{cosect}-\cot t.\operatorname{cosect}.f\left( t \right)=\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}$ in the function g(x), we get
$g\left( x \right)=\int\limits_{x}^{\dfrac{\pi }{2}}{\dfrac{d\left( f\left( t \right).\operatorname{cosect} \right)}{dt}dt}$
\[\begin{align}
& g\left( x \right)=\left[ \left( f\left( t \right).\operatorname{cosect} \right) \right]_{x}^{\dfrac{\pi }{2}} \\
& g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-f\left( x \right).\operatorname{cosec}x \\
\end{align}\]
Now we will find the limit $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$, as
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to 0}{\mathop{\lim }}\,\left( f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-f\left( x \right).\operatorname{cosec}x \right)$
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,f\left( x \right).\operatorname{cosec}x$
As we know $\operatorname{cosec}x=\dfrac{1}{\sin x}$,
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{\sin x}$
Now limit $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{\sin x}$ is of the form $\dfrac{0}{0}$ because $f\left( 0 \right)=0$ is given, hence we can apply L’hospital’s rule here,
L’hospital says that if we have an indeterminate form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$, all we need to do is differentiate the numerator and differentiate the denominator and then take the limit. So applying the L’hospital’s rule, we get
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=f\left( \dfrac{\pi }{2} \right).\operatorname{cosec}\dfrac{\pi }{2}-\underset{x\to 0}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{\cos x}$
Now, putting the values $f\left( \dfrac{\pi }{2} \right)=3\,,f'\left( 0 \right)=1,\operatorname{cosec}\dfrac{\pi }{2}=1\,and\,\cos 0=1$, we get
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=3-1=2$
$\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)=2$
Hence our answer for the value of the limit $\underset{x\to 0}{\mathop{\lim }}\,g\left( x \right)$ is 2.
Note: Students may make mistake while applying the L’hospital’s rule and may not check the form of the limit i.e. we can apply L’hospital’s rule only if the limit is of the form $\dfrac{0}{0}\,or\,\dfrac{\infty }{\infty }$ else we cannot apply this rule. And you may also do not change \[\operatorname{cosec}t\] to $\dfrac{1}{\sin t}$ in the function g(x) and remain stuck in order to solve the limit so usually try to convert secant, cosecant to sine and cosine.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
