
If $\int{\dfrac{x+1}{\sqrt{2x-1}}}dx=f\left( x \right)\sqrt{2x-1}+C$ where C is a constant of integration then f (x) is equal to:
\[\begin{align}
& A.\dfrac{1}{3}\left( x+4 \right) \\
& B.\dfrac{1}{3}\left( x+1 \right) \\
& C.\dfrac{2}{3}\left( x+2 \right) \\
& D.\dfrac{2}{3}\left( x-4 \right) \\
\end{align}\]
Answer
588.6k+ views
Hint: By looking over the question, we found no limits of integration and constant of integration is present, hence it is indefinite integration, in which we have to evaluate left hand side expression and then compare it to RHS. In most of the cases in integration, whenever we see some variable present in under root expression (like here $\sqrt{2x-1}$) then we have to put that expression to some other variable. This process is known as a method of substitution. After substituting the value, we get the integration in more simple and easy computable form.
Complete step by step answer:
We have been given that,
\[\int{\dfrac{x+1}{\sqrt{2x-1}}}dx=f\left( x \right)\sqrt{2x-1}+C\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, as we told earlier, put $\sqrt{2x-1}=t$
By squaring both sides, we get:
\[2x-1={{t}^{2}}\]
Now, differentiate both the sides, we have:
\[\begin{align}
& 2dx=2tdt \\
& \text{Cancelling 2 from both sides,} \\
& dx=tdt\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, we have:
\[\begin{align}
& 2x-1={{t}^{2}} \\
& \therefore x=\left( \dfrac{1+{{t}^{2}}}{2} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Now, from LHS part of the equation (i) we have:
\[\begin{align}
& \int{\dfrac{x+1}{\sqrt{2x-1}}}dx \\
& \Rightarrow \int{\dfrac{\left( \dfrac{1+{{t}^{2}}}{2} \right)+1}{t}}\times tdt\text{ }\left( \text{from equation }\left( \text{ii} \right)\text{ and }\left( \text{iii} \right) \right) \\
& \Rightarrow \int{\left( \dfrac{1+{{t}^{2}}+2}{2t} \right)}tdt \\
& \Rightarrow \dfrac{1}{2}\int{\left( {{t}^{2}}+3 \right)dt} \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+3t \right)+C \\
& \Rightarrow \dfrac{1}{2}\times t\left( \dfrac{{{t}^{2}}}{3}+3 \right)+C \\
& \Rightarrow \dfrac{1}{2}\times \sqrt{2x-1}\left( \dfrac{2x-1}{3}+3 \right)+C \\
& \Rightarrow \dfrac{1}{2}\times \sqrt{2x-1}\left( \dfrac{2x+8}{3} \right)+C \\
\end{align}\]
Now, by comparing with the RHS of equation (i) we have:
\[f\left( x \right)=\left( \dfrac{2x+8}{3\times 2} \right)=\left( \dfrac{x+4}{3} \right)\]
So, the correct answer is “Option A”.
Note: Sometimes, when students do the substitution method, when they convert the given integration to new integration form, they forget to change the (dx) part of the integration, which leads to wrong answers. We have to change each and every term with the newly assigned variable. These mistakes will be more blunder when we do definite integration, where we have to change the limits also.
Complete step by step answer:
We have been given that,
\[\int{\dfrac{x+1}{\sqrt{2x-1}}}dx=f\left( x \right)\sqrt{2x-1}+C\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Now, as we told earlier, put $\sqrt{2x-1}=t$
By squaring both sides, we get:
\[2x-1={{t}^{2}}\]
Now, differentiate both the sides, we have:
\[\begin{align}
& 2dx=2tdt \\
& \text{Cancelling 2 from both sides,} \\
& dx=tdt\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now, we have:
\[\begin{align}
& 2x-1={{t}^{2}} \\
& \therefore x=\left( \dfrac{1+{{t}^{2}}}{2} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (iii)} \\
\end{align}\]
Now, from LHS part of the equation (i) we have:
\[\begin{align}
& \int{\dfrac{x+1}{\sqrt{2x-1}}}dx \\
& \Rightarrow \int{\dfrac{\left( \dfrac{1+{{t}^{2}}}{2} \right)+1}{t}}\times tdt\text{ }\left( \text{from equation }\left( \text{ii} \right)\text{ and }\left( \text{iii} \right) \right) \\
& \Rightarrow \int{\left( \dfrac{1+{{t}^{2}}+2}{2t} \right)}tdt \\
& \Rightarrow \dfrac{1}{2}\int{\left( {{t}^{2}}+3 \right)dt} \\
& \Rightarrow \dfrac{1}{2}\left( \dfrac{{{t}^{3}}}{3}+3t \right)+C \\
& \Rightarrow \dfrac{1}{2}\times t\left( \dfrac{{{t}^{2}}}{3}+3 \right)+C \\
& \Rightarrow \dfrac{1}{2}\times \sqrt{2x-1}\left( \dfrac{2x-1}{3}+3 \right)+C \\
& \Rightarrow \dfrac{1}{2}\times \sqrt{2x-1}\left( \dfrac{2x+8}{3} \right)+C \\
\end{align}\]
Now, by comparing with the RHS of equation (i) we have:
\[f\left( x \right)=\left( \dfrac{2x+8}{3\times 2} \right)=\left( \dfrac{x+4}{3} \right)\]
So, the correct answer is “Option A”.
Note: Sometimes, when students do the substitution method, when they convert the given integration to new integration form, they forget to change the (dx) part of the integration, which leads to wrong answers. We have to change each and every term with the newly assigned variable. These mistakes will be more blunder when we do definite integration, where we have to change the limits also.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

