
If \[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf(x){{\left( 1+{{x}^{^{6}}} \right)}^{^{\dfrac{1}{3}}}}+c\] where \[c\] is a constant of integration, then the function \[f\left( x \right)\] is equal to _____
(a) \[-\dfrac{1}{6{{x}^{3}}}\]
(b) \[\dfrac{3}{{{x}^{2}}}\]
(c) \[-\dfrac{1}{2{{x}^{2}}}\]
(d) \[-\dfrac{1}{2{{x}^{3}}}\]
Answer
588k+ views
Hint: To solve this question we have to make some arrangement of terms and use substitution as-
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}=\int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}}\]
\[=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
Put \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Complete step by step answer:
Let us consider
\[I=\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
Now, let us take ${{x}^{6}}$ common from ${{(1+{{x}^{6}})}^{\dfrac{2}{3}}}$ . Then we will have
$I=\int{\dfrac{dx}{{{x}^{3}}.{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
$\Rightarrow I=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}..............(i)$
Let \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Differentiating, we get
\[\begin{align}
& \text{ }0+\left( -\dfrac{6}{{{x}^{7}}} \right)dx=3{{t}^{2}}dt \\
& \Rightarrow -\dfrac{6}{{{x}^{7}}}dx=3{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{3}{6}{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{1}{2}{{t}^{2}}dt \\
\end{align}\]
Now we can write equation $(i)$ as
$I=\int{-\dfrac{1}{2}\dfrac{{{t}^{2}}dt}{{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=-\dfrac{1}{2}\int{\dfrac{{{t}^{2}}dt}{{{t}^{2}}}}\]
$\Rightarrow I=-\dfrac{1}{2}\int{dt}$
We know that $\int{dz=z+c}$ , where $c$ is a constant of integration.
$\therefore I=-\dfrac{1}{2}t+c$
As we have put ${{t}^{3}}=\left( 1+\dfrac{1}{{{x}^{6}}} \right)$ , therefore
$I=-\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c$
Now it is given that
\[\begin{align}
& \text{ }\int{\dfrac{dx}{{{x}^{3}}{{(1+{{x}^{6}})}^{\dfrac{2}{3}}}}=xf(x)}{{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow I=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}}{{{({{x}^{6}})}^{\dfrac{1}{3}}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{1}{{{x}^{2}}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
\end{align}\]
Comparing both sides, we get
$f(x)=-\dfrac{1}{2{{x}^{3}}}$
So, the correct answer is “Option D”.
Note: The student must notice about putting the value of ${{t}^{3}}$ that we will put \[\left( 1+\dfrac{1}{{{x}^{6}}} \right)={{t}^{3}}\] , not \[{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}={{t}^{3}}\] . Then you might get wrong or confused in finding the solution. Also, you must remember the integration of elementary functions.
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}=\int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}}\]
\[=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
Put \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Complete step by step answer:
Let us consider
\[I=\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
Now, let us take ${{x}^{6}}$ common from ${{(1+{{x}^{6}})}^{\dfrac{2}{3}}}$ . Then we will have
$I=\int{\dfrac{dx}{{{x}^{3}}.{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
$\Rightarrow I=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}..............(i)$
Let \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Differentiating, we get
\[\begin{align}
& \text{ }0+\left( -\dfrac{6}{{{x}^{7}}} \right)dx=3{{t}^{2}}dt \\
& \Rightarrow -\dfrac{6}{{{x}^{7}}}dx=3{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{3}{6}{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{1}{2}{{t}^{2}}dt \\
\end{align}\]
Now we can write equation $(i)$ as
$I=\int{-\dfrac{1}{2}\dfrac{{{t}^{2}}dt}{{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=-\dfrac{1}{2}\int{\dfrac{{{t}^{2}}dt}{{{t}^{2}}}}\]
$\Rightarrow I=-\dfrac{1}{2}\int{dt}$
We know that $\int{dz=z+c}$ , where $c$ is a constant of integration.
$\therefore I=-\dfrac{1}{2}t+c$
As we have put ${{t}^{3}}=\left( 1+\dfrac{1}{{{x}^{6}}} \right)$ , therefore
$I=-\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c$
Now it is given that
\[\begin{align}
& \text{ }\int{\dfrac{dx}{{{x}^{3}}{{(1+{{x}^{6}})}^{\dfrac{2}{3}}}}=xf(x)}{{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow I=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}}{{{({{x}^{6}})}^{\dfrac{1}{3}}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{1}{{{x}^{2}}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
\end{align}\]
Comparing both sides, we get
$f(x)=-\dfrac{1}{2{{x}^{3}}}$
So, the correct answer is “Option D”.
Note: The student must notice about putting the value of ${{t}^{3}}$ that we will put \[\left( 1+\dfrac{1}{{{x}^{6}}} \right)={{t}^{3}}\] , not \[{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}={{t}^{3}}\] . Then you might get wrong or confused in finding the solution. Also, you must remember the integration of elementary functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

