
If \[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}=xf(x){{\left( 1+{{x}^{^{6}}} \right)}^{^{\dfrac{1}{3}}}}+c\] where \[c\] is a constant of integration, then the function \[f\left( x \right)\] is equal to _____
(a) \[-\dfrac{1}{6{{x}^{3}}}\]
(b) \[\dfrac{3}{{{x}^{2}}}\]
(c) \[-\dfrac{1}{2{{x}^{2}}}\]
(d) \[-\dfrac{1}{2{{x}^{3}}}\]
Answer
509.1k+ views
Hint: To solve this question we have to make some arrangement of terms and use substitution as-
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}=\int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}}\]
\[=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
Put \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Complete step by step answer:
Let us consider
\[I=\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
Now, let us take ${{x}^{6}}$ common from ${{(1+{{x}^{6}})}^{\dfrac{2}{3}}}$ . Then we will have
$I=\int{\dfrac{dx}{{{x}^{3}}.{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
$\Rightarrow I=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}..............(i)$
Let \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Differentiating, we get
\[\begin{align}
& \text{ }0+\left( -\dfrac{6}{{{x}^{7}}} \right)dx=3{{t}^{2}}dt \\
& \Rightarrow -\dfrac{6}{{{x}^{7}}}dx=3{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{3}{6}{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{1}{2}{{t}^{2}}dt \\
\end{align}\]
Now we can write equation $(i)$ as
$I=\int{-\dfrac{1}{2}\dfrac{{{t}^{2}}dt}{{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=-\dfrac{1}{2}\int{\dfrac{{{t}^{2}}dt}{{{t}^{2}}}}\]
$\Rightarrow I=-\dfrac{1}{2}\int{dt}$
We know that $\int{dz=z+c}$ , where $c$ is a constant of integration.
$\therefore I=-\dfrac{1}{2}t+c$
As we have put ${{t}^{3}}=\left( 1+\dfrac{1}{{{x}^{6}}} \right)$ , therefore
$I=-\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c$
Now it is given that
\[\begin{align}
& \text{ }\int{\dfrac{dx}{{{x}^{3}}{{(1+{{x}^{6}})}^{\dfrac{2}{3}}}}=xf(x)}{{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow I=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}}{{{({{x}^{6}})}^{\dfrac{1}{3}}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{1}{{{x}^{2}}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
\end{align}\]
Comparing both sides, we get
$f(x)=-\dfrac{1}{2{{x}^{3}}}$
So, the correct answer is “Option D”.
Note: The student must notice about putting the value of ${{t}^{3}}$ that we will put \[\left( 1+\dfrac{1}{{{x}^{6}}} \right)={{t}^{3}}\] , not \[{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}={{t}^{3}}\] . Then you might get wrong or confused in finding the solution. Also, you must remember the integration of elementary functions.
\[\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}=\int{\dfrac{dx}{{{x}^{3}}{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}}\]
\[=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
Put \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Complete step by step answer:
Let us consider
\[I=\int{\dfrac{dx}{{{x}^{3}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{2}{3}}}}}\]
Now, let us take ${{x}^{6}}$ common from ${{(1+{{x}^{6}})}^{\dfrac{2}{3}}}$ . Then we will have
$I=\int{\dfrac{dx}{{{x}^{3}}.{{\left( {{x}^{6}} \right)}^{\dfrac{2}{3}}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=\int{\dfrac{dx}{{{x}^{3}}.{{x}^{4}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}\]
$\Rightarrow I=\int{\dfrac{dx}{{{x}^{7}}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}}}..............(i)$
Let \[1+\dfrac{1}{{{x}^{6}}}={{t}^{3}}\] .
Differentiating, we get
\[\begin{align}
& \text{ }0+\left( -\dfrac{6}{{{x}^{7}}} \right)dx=3{{t}^{2}}dt \\
& \Rightarrow -\dfrac{6}{{{x}^{7}}}dx=3{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{3}{6}{{t}^{2}}dt \\
& \Rightarrow \dfrac{dx}{{{x}^{7}}}=-\dfrac{1}{2}{{t}^{2}}dt \\
\end{align}\]
Now we can write equation $(i)$ as
$I=\int{-\dfrac{1}{2}\dfrac{{{t}^{2}}dt}{{{\left( {{t}^{3}} \right)}^{\dfrac{2}{3}}}}}$
\[\Rightarrow I=-\dfrac{1}{2}\int{\dfrac{{{t}^{2}}dt}{{{t}^{2}}}}\]
$\Rightarrow I=-\dfrac{1}{2}\int{dt}$
We know that $\int{dz=z+c}$ , where $c$ is a constant of integration.
$\therefore I=-\dfrac{1}{2}t+c$
As we have put ${{t}^{3}}=\left( 1+\dfrac{1}{{{x}^{6}}} \right)$ , therefore
$I=-\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c$
Now it is given that
\[\begin{align}
& \text{ }\int{\dfrac{dx}{{{x}^{3}}{{(1+{{x}^{6}})}^{\dfrac{2}{3}}}}=xf(x)}{{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow I=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}}{{{({{x}^{6}})}^{\dfrac{1}{3}}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
& \Rightarrow -\dfrac{1}{2}\dfrac{1}{{{x}^{2}}}{{\left( 1+{{x}^{6}} \right)}^{\dfrac{1}{3}}}+c=xf(x){{(1+{{x}^{6}})}^{\dfrac{1}{3}}}+c \\
\end{align}\]
Comparing both sides, we get
$f(x)=-\dfrac{1}{2{{x}^{3}}}$
So, the correct answer is “Option D”.
Note: The student must notice about putting the value of ${{t}^{3}}$ that we will put \[\left( 1+\dfrac{1}{{{x}^{6}}} \right)={{t}^{3}}\] , not \[{{\left( 1+\dfrac{1}{{{x}^{6}}} \right)}^{\dfrac{2}{3}}}={{t}^{3}}\] . Then you might get wrong or confused in finding the solution. Also, you must remember the integration of elementary functions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
