
If $\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C$ where, $C$ is a constant of integration, then find the function $f\left( x \right)$. \[\]
Answer
485.1k+ views
Hint: We proceed from left hand side and take ${{x}^{4}}$common from the bracket. We substitute $t=\dfrac{1}{{{x}^{4}}}+1$ and find $dx$ in terms of $t,dt$ also substituted in the integrand. We integrate with respect to $t$ and put back $t$ in terms of $x$. We multiply and divide $x$and then compare the resultant expression with expression at the right hand side to get $f\left( x \right)$. \[\]
Complete step by step answer:
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
\[\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C\]
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required function $f\left( x \right)$. We proceed from left hand side,
\[ \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}\]
We take ${{x}^{4}}$ common from the bracket in the denominator to get,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}}\left( \dfrac{1}{{{x}^{4}}}+1 \right) \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}} \right)}^{\dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
\end{align}\]
We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=\dfrac{3}{4}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{4\times \dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{3}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{1}{{{x}^{5}}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{-\dfrac{3}{4}}}dx.........\left( 1 \right) \\
\end{align}\]
We can substitute $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate $t=\dfrac{1}{{{x}^{4}}}+1$ both side with respect to $x$ to have,
\[\begin{align}
& \dfrac{d}{dx}t=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{4}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-4}}+1 \right) \\
& \Rightarrow \dfrac{dt}{dx}=-4{{x}^{-4-1}}+0 \\
& \Rightarrow dx=\dfrac{dt}{-4{{x}^{-5}}} \\
\end{align}\]
We put $t=\dfrac{1}{{{x}^{4}}}+1$ and $dx=\dfrac{dt}{-4{{x}^{-5}}}$ in (1) to have
\[\begin{align}
& \Rightarrow \int{\dfrac{1}{{{x}^{5}}}\times t\times \dfrac{dt}{-4{{x}^{-5}}}} \\
& \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5}}{{x}^{5}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-5,n=5$ in the above step to have
\[\begin{align}
& \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5+5}}}} \\
& \Rightarrow \dfrac{-1}{4}\int{tdt} \\
& \Rightarrow \dfrac{-1}{4}\dfrac{{{t}^{2}}}{2}+C \\
& \Rightarrow \dfrac{-1}{8}{{t}^{2}}+C \\
\end{align}\]
We put $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{2}}+C \\
& \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{{{x}^{4}}+1}{{{x}^{4}}} \right)}^{2}}+C \\
& \Rightarrow \dfrac{-1}{8}\dfrac{{{\left( {{x}^{4}}+1 \right)}^{2}}}{{{\left( {{x}^{4}} \right)}^{2}}}+C \\
\end{align}\]
We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=2$ in the above step to have
\[\Rightarrow \dfrac{-1}{8{{x}^{8}}}{{\left( {{x}^{4}}+1 \right)}^{2}}+C=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C\]
We compare both side and have the required function as $f\left( x \right)=\dfrac{-1}{8{{x}^{8}}}$. \[\]
Note: We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.
Complete step by step answer:
We are given in the question an equation whose left hand side has an integral and the right hand side has functional equation as
\[\int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C\]
If we shall integrate the left hand side and try to express the result similar to the expression at the right hand side we may get the required function $f\left( x \right)$. We proceed from left hand side,
\[ \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( 1+{{x}^{4}} \right)}^{\dfrac{3}{4}}}}}\]
We take ${{x}^{4}}$ common from the bracket in the denominator to get,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}}\left( \dfrac{1}{{{x}^{4}}}+1 \right) \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{\left( {{x}^{4}} \right)}^{\dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
\end{align}\]
We use the exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=\dfrac{3}{4}$ in the above step to have
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{4\times \dfrac{3}{4}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{2}}{{x}^{3}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=3,n=4$ in the above step to have,
\[\begin{align}
& \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{dx}{{{x}^{5}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{\dfrac{3}{4}}}}} \\
& \Rightarrow \int{\dfrac{1}{{{x}^{5}}}}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{-\dfrac{3}{4}}}dx.........\left( 1 \right) \\
\end{align}\]
We can substitute $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step since integration is independent of change in variable and for that we also need $dx$ and rest of the expression in $x$ in terms of $t$. We differentiate $t=\dfrac{1}{{{x}^{4}}}+1$ both side with respect to $x$ to have,
\[\begin{align}
& \dfrac{d}{dx}t=\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{4}}}+1 \right)=\dfrac{d}{dx}\left( {{x}^{-4}}+1 \right) \\
& \Rightarrow \dfrac{dt}{dx}=-4{{x}^{-4-1}}+0 \\
& \Rightarrow dx=\dfrac{dt}{-4{{x}^{-5}}} \\
\end{align}\]
We put $t=\dfrac{1}{{{x}^{4}}}+1$ and $dx=\dfrac{dt}{-4{{x}^{-5}}}$ in (1) to have
\[\begin{align}
& \Rightarrow \int{\dfrac{1}{{{x}^{5}}}\times t\times \dfrac{dt}{-4{{x}^{-5}}}} \\
& \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5}}{{x}^{5}}}} \\
\end{align}\]
We use the exponential identity of power product with same base ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ for $a=x,m=-5,n=5$ in the above step to have
\[\begin{align}
& \Rightarrow \dfrac{-1}{4}\int{\dfrac{tdt}{{{x}^{-5+5}}}} \\
& \Rightarrow \dfrac{-1}{4}\int{tdt} \\
& \Rightarrow \dfrac{-1}{4}\dfrac{{{t}^{2}}}{2}+C \\
& \Rightarrow \dfrac{-1}{8}{{t}^{2}}+C \\
\end{align}\]
We put $t=\dfrac{1}{{{x}^{4}}}+1$ in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{1}{{{x}^{4}}}+1 \right)}^{2}}+C \\
& \Rightarrow \dfrac{-1}{8}{{\left( \dfrac{{{x}^{4}}+1}{{{x}^{4}}} \right)}^{2}}+C \\
& \Rightarrow \dfrac{-1}{8}\dfrac{{{\left( {{x}^{4}}+1 \right)}^{2}}}{{{\left( {{x}^{4}} \right)}^{2}}}+C \\
\end{align}\]
We use exponential identity of power raised to another power ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{m\times n}},a\ne 0$ for $a=x,m=4,n=2$ in the above step to have
\[\Rightarrow \dfrac{-1}{8{{x}^{8}}}{{\left( {{x}^{4}}+1 \right)}^{2}}+C=f\left( x \right){{\left( 1+{{x}^{4}} \right)}^{2}}+C\]
We compare both side and have the required function as $f\left( x \right)=\dfrac{-1}{8{{x}^{8}}}$. \[\]
Note: We note that the function is not defined for $x=0$ and the question assumes that. The method of integration we used here is called t-substitution or integration by substitution. We have also used the formula standard integral $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1},n\ne -1$ and the standard differentiation formula $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ frequently in this problem.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
