
If $ \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} $ is equal to
A. $ \dfrac{{{e}^{x}}\cos x}{\sin x+1}+c $
B. $ -\dfrac{{{e}^{x}}\sin x}{\sin x+1}+c $
C. $ \dfrac{-{{e}^{x}}}{\sin x+1}+c $
D. $ -\dfrac{{{e}^{x}}\cos x}{\sin x+1}+c $
Answer
505.2k+ views
Hint: We first discuss the integration by parts method. Integration by parts method is usually used for the multiplication of the functions and their integration. We take two arbitrary functions to express the theorem. We take the $ u=\dfrac{\cos x}{\sin x+1},v={{e}^{x}} $ for our integration $ \int{{{x}^{2}}\ln xdx} $ .
Complete step-by-step answer:
We break the negative part in the numerator of $ \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} $ and get
$ \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} $ .
We now apply by-parts on the integral form of $ \int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} $ .
Let’s assume $ f\left( x \right)=g\left( x \right)h\left( x \right) $ . We need to find the integration of $ \int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx} $ .
We take $ u=g\left( x \right),v=h\left( x \right) $ . This gives $ \int{f\left( x \right)dx}=\int{uvdx} $ .
The theorem of integration by parts gives $ \int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} $ .
For our integration $ \int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} $ , we take $ u=\dfrac{\cos x}{\sin x+1},v={{e}^{x}} $ .
Now we complete the integration \[\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{\cos x}{\sin x+1}\int{{{e}^{x}}dx}-\int{\left( \dfrac{d\left( \dfrac{\cos x}{\sin x+1} \right)}{dx}\int{{{e}^{x}}dx} \right)dx}\].
The differential part \[\dfrac{d}{dx}\left( \dfrac{\cos x}{\sin x+1} \right)=\dfrac{-\left( \sin x+1 \right)\sin x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-\sin x-{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-1}{\left( \sin x+1 \right)}\]
We apply these formulas to complete the integration and get
\[\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}\].
The final form becomes
$ \begin{align}
& \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} \\
& \Rightarrow \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1} \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: In case one of two functions are missing and we need to form the by parts method, we will take the multiplying constant 1 as the second function.
For example: if we need to find \[\int{\ln xdx}\], we have only one function. So, we take constant 1 as the second function where $ u=\ln x,v=1 $ . But we need to remember that we won’t perform by parts by taking $ u=1 $ .
Complete step-by-step answer:
We break the negative part in the numerator of $ \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx} $ and get
$ \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} $ .
We now apply by-parts on the integral form of $ \int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} $ .
Let’s assume $ f\left( x \right)=g\left( x \right)h\left( x \right) $ . We need to find the integration of $ \int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx} $ .
We take $ u=g\left( x \right),v=h\left( x \right) $ . This gives $ \int{f\left( x \right)dx}=\int{uvdx} $ .
The theorem of integration by parts gives $ \int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} $ .
For our integration $ \int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}} $ , we take $ u=\dfrac{\cos x}{\sin x+1},v={{e}^{x}} $ .
Now we complete the integration \[\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{\cos x}{\sin x+1}\int{{{e}^{x}}dx}-\int{\left( \dfrac{d\left( \dfrac{\cos x}{\sin x+1} \right)}{dx}\int{{{e}^{x}}dx} \right)dx}\].
The differential part \[\dfrac{d}{dx}\left( \dfrac{\cos x}{\sin x+1} \right)=\dfrac{-\left( \sin x+1 \right)\sin x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-\sin x-{{\sin }^{2}}x-{{\cos }^{2}}x}{{{\left( \sin x+1 \right)}^{2}}}=\dfrac{-1}{\left( \sin x+1 \right)}\]
We apply these formulas to complete the integration and get
\[\int{\dfrac{{{e}^{x}}\cos xdx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}\].
The final form becomes
$ \begin{align}
& \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\int{\dfrac{{{e}^{x}}\cos x}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}} \\
& \Rightarrow \int{\dfrac{\cos x-1}{\sin x+1}{{e}^{x}}dx}=\dfrac{{{e}^{x}}\cos x}{\sin x+1}+\int{\dfrac{{{e}^{x}}}{\sin x+1}dx}-\int{\dfrac{{{e}^{x}}dx}{\sin x+1}}=\dfrac{{{e}^{x}}\cos x}{\sin x+1} \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: In case one of two functions are missing and we need to form the by parts method, we will take the multiplying constant 1 as the second function.
For example: if we need to find \[\int{\ln xdx}\], we have only one function. So, we take constant 1 as the second function where $ u=\ln x,v=1 $ . But we need to remember that we won’t perform by parts by taking $ u=1 $ .
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

