
If $\int {\cos ec2xdx = f\left( {g\left( x \right)} \right) + C} $, then
A) range $g\left( x \right) = \left( { - \infty ,\infty } \right)$
B) dom $g\left( x \right) = \left( { - \infty ,\infty } \right) - \left\{ 0 \right\}$
C) $g'\left( x \right) = {\sec ^2}x$
D) $f'\left( x \right) = \dfrac{1}{x}$ for all $x \in \left( {0,\infty } \right)$
Answer
569.7k+ views
Hint:
Our given function can be written as \[\int {\dfrac{{dx}}{{\sin 2x}}} \] and by using the identity $\sin 2x = 2\sin x\cos x$ we get an integral and we can use our substitution method by taking $t = \sin x$ and simplifying further once again we use substitution method by taking $y = \left( {1 - {t^2}} \right)$ and further simplifying we get $f(x) = \ln x$ and $g(x) = \tan x$ using this we get our required conditions.
Complete step by step solution:
We are given a function \[\int {\cos ec2xdx} \]
We know that $\cos ec x$ can be written as $\dfrac{1}{{\sin x}}$
Using this we get
\[ \Rightarrow \int {\dfrac{{dx}}{{\sin 2x}}} \]
Then let's use the identity $\sin 2x = 2\sin x\cos x$
\[ \Rightarrow \int {\dfrac{{dx}}{{2\sin x\cos x}}} \]
Now lets use substitution method to solve the following integral
Let $t = \sin x$
Differentiating we get $dt = \cos xdx$
\[
\Rightarrow \int {\dfrac{{dt}}{{2t\cos x\cos x}}} \\
\Rightarrow \int {\dfrac{{dt}}{{2t{{\cos }^2}x}}} \\
\]
Now since $t = \sin x$
$
\Rightarrow {t^2} = {\sin ^2}x \\
\Rightarrow {t^2} = 1 - {\cos ^2}x \\
\Rightarrow {\cos ^2}x = 1 - {t^2} \\
$
Using this we get
\[ \Rightarrow \int {\dfrac{{dt}}{{2t\left( {1 - {t^2}} \right)}}} \]
Now let's add and subtract in the numerator
\[
\Rightarrow \int {\dfrac{{1 + {t^2} - {t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt} \\
\Rightarrow \int {\dfrac{{1 - {t^2}}}{{2t\left( {1 - {t^2}} \right)}} + } \dfrac{{{t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt \\
\Rightarrow \int {\dfrac{1}{{2t}} + } \dfrac{t}{{2\left( {1 - {t^2}} \right)}}dt \\
\]
Now let's multiply and divide 2 in the second part
\[ \Rightarrow \int {\dfrac{1}{{2t}}dt} + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt} \]
Integrating the first part we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt} \]
Now once again let's use substitution method
Let $y = \left( {1 - {t^2}} \right)$
Differentiating we get $dy = - 2tdt$
Now we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{ - dy}}{y}} \]
Integrating this we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{{ - 1}}{4}\ln y + C\]
Replacing y by $\left( {1 - {t^2}} \right)$
\[
\Rightarrow \dfrac{1}{2}\ln t - \dfrac{1}{4}\ln \left( {1 - {t^2}} \right) + C \\
\Rightarrow \dfrac{{2\ln t - \ln \left( {1 - {t^2}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln {t^2} - \ln \left( {1 - {t^2}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{t^2}}}{{\left( {1 - {t^2}} \right)}}} \right)}}{4} + C \\
\]
Now using $t = \sin x$
\[
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{\left( {1 - {{\sin }^2}x} \right)}}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {{{\tan }^2}x} \right)}}{4} + C \\
\Rightarrow \dfrac{{2\ln \left( {\tan x} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\tan x} \right)}}{2} + C \\
\]
From this obtain that $f(x) = \ln x$ and $g(x) = \tan x$
Differentiating them we get $f'(x) = \dfrac{1}{x}$ and $g'(x) = {\sec ^2}x$
Now with our g(x) we can see the range and domain of tanx is $\left( { - \infty ,\infty } \right)$
From this we get that the options a , c and d are correct.
Note:
The domain of a function f(x) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes. (In grammar school, you probably called the domain the replacement set and the range the solution set.
Our given function can be written as \[\int {\dfrac{{dx}}{{\sin 2x}}} \] and by using the identity $\sin 2x = 2\sin x\cos x$ we get an integral and we can use our substitution method by taking $t = \sin x$ and simplifying further once again we use substitution method by taking $y = \left( {1 - {t^2}} \right)$ and further simplifying we get $f(x) = \ln x$ and $g(x) = \tan x$ using this we get our required conditions.
Complete step by step solution:
We are given a function \[\int {\cos ec2xdx} \]
We know that $\cos ec x$ can be written as $\dfrac{1}{{\sin x}}$
Using this we get
\[ \Rightarrow \int {\dfrac{{dx}}{{\sin 2x}}} \]
Then let's use the identity $\sin 2x = 2\sin x\cos x$
\[ \Rightarrow \int {\dfrac{{dx}}{{2\sin x\cos x}}} \]
Now lets use substitution method to solve the following integral
Let $t = \sin x$
Differentiating we get $dt = \cos xdx$
\[
\Rightarrow \int {\dfrac{{dt}}{{2t\cos x\cos x}}} \\
\Rightarrow \int {\dfrac{{dt}}{{2t{{\cos }^2}x}}} \\
\]
Now since $t = \sin x$
$
\Rightarrow {t^2} = {\sin ^2}x \\
\Rightarrow {t^2} = 1 - {\cos ^2}x \\
\Rightarrow {\cos ^2}x = 1 - {t^2} \\
$
Using this we get
\[ \Rightarrow \int {\dfrac{{dt}}{{2t\left( {1 - {t^2}} \right)}}} \]
Now let's add and subtract in the numerator
\[
\Rightarrow \int {\dfrac{{1 + {t^2} - {t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt} \\
\Rightarrow \int {\dfrac{{1 - {t^2}}}{{2t\left( {1 - {t^2}} \right)}} + } \dfrac{{{t^2}}}{{2t\left( {1 - {t^2}} \right)}}dt \\
\Rightarrow \int {\dfrac{1}{{2t}} + } \dfrac{t}{{2\left( {1 - {t^2}} \right)}}dt \\
\]
Now let's multiply and divide 2 in the second part
\[ \Rightarrow \int {\dfrac{1}{{2t}}dt} + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt} \]
Integrating the first part we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{2t}}{{\left( {1 - {t^2}} \right)}}dt} \]
Now once again let's use substitution method
Let $y = \left( {1 - {t^2}} \right)$
Differentiating we get $dy = - 2tdt$
Now we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{1}{4}\int {\dfrac{{ - dy}}{y}} \]
Integrating this we get
\[ \Rightarrow \dfrac{1}{2}\ln t + \dfrac{{ - 1}}{4}\ln y + C\]
Replacing y by $\left( {1 - {t^2}} \right)$
\[
\Rightarrow \dfrac{1}{2}\ln t - \dfrac{1}{4}\ln \left( {1 - {t^2}} \right) + C \\
\Rightarrow \dfrac{{2\ln t - \ln \left( {1 - {t^2}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln {t^2} - \ln \left( {1 - {t^2}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{t^2}}}{{\left( {1 - {t^2}} \right)}}} \right)}}{4} + C \\
\]
Now using $t = \sin x$
\[
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{\left( {1 - {{\sin }^2}x} \right)}}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {{{\tan }^2}x} \right)}}{4} + C \\
\Rightarrow \dfrac{{2\ln \left( {\tan x} \right)}}{4} + C \\
\Rightarrow \dfrac{{\ln \left( {\tan x} \right)}}{2} + C \\
\]
From this obtain that $f(x) = \ln x$ and $g(x) = \tan x$
Differentiating them we get $f'(x) = \dfrac{1}{x}$ and $g'(x) = {\sec ^2}x$
Now with our g(x) we can see the range and domain of tanx is $\left( { - \infty ,\infty } \right)$
From this we get that the options a , c and d are correct.
Note:
The domain of a function f(x) is the set of all values for which the function is defined, and the range of the function is the set of all values that f takes. (In grammar school, you probably called the domain the replacement set and the range the solution set.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

