Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If In=(sinx)ndx,nN. Then, 5I46I6 is equal to:
(a) sinx.(cosx)5+C
(b) sin2x.cos2x+C
(c) sin2x8[cos2x+12cos2x]+C
(d) sin2x8[cos2x+1+2cos2x]+C

Answer
VerifiedVerified
518.1k+ views
1 likes
like imagedislike image
Hint: To solve the question given above, we will first find out the values of I4 and I6 by putting n = 4 and n = 6 respectively in the equation given. For the calculation of I4 and I6, our main aim will be to convert higher powers of the sine function to the sine functions or cosine functions with single power. Then we will put the values of I4 and I6 in 5I46I6 and then solve.

Complete step-by-step answer:
In the first step, we are going to calculate the value of I4. We know that,
In=(sinx)ndx
When we put n = 4 in the above equation, we get,
I4=(sinx)4dx
Now, we have to find the value of I4. As we know that the direct integration of (sinx)4 does not exist, so we will try to reduce the power. For this, we will write (sinx)4 as (sin2x)2 with the help of the identity (ab)c=ab×c. Thus, we will get,
I4=(sin2x)2dx
Now, here we will use a trigonometric identity,
cos2θ=12sin2θ
1cos2θ=2sin2θ
sin2θ=1cos2θ2
By using the above identity, we will get,
I4=(1cos2x2)2dx
I4=(1cos2x)42dx
I4=14(1cos2x)2dx
Now, we will use the identity,
(ab)2=a2+b22ab.
Thus, we will get,
I4=14(1+cos22x2cos2x)dx.....(i)
Now, here we will use another trigonometric identity:
cos2θ=2cos2θ1
2cos2θ=1+cos2θ
cos2θ=1+cos2θ2
Putting θ=2x, we will get,
cos22x=1+cos4x2.....(ii)
Putting the value of cos22x from (ii) to (i), we will get,
I4=14(1+1+cos4x22cos2x)dx
I4=14(1+12+cos4x22cos2x)dx
I4=14(32+cos4x22cos2x)dx
I4=1432dx+14cos4x2dx142cos2xdx
Now, here we will use the following integration formulas,
adx=ax+C
cosadx=sinaxa+C
I4=[14(32x)+C1]+[14(sin4x4)(12)+C2][14(2sin2x2)+C3]
I4=38x+C1+sin4x32+C2sin2x4+C3
Considering the constants C1=C2=C3=C4, we get,
I4=3x8+sin4x32sin2x4+C4.....(iii)
Now, similarly, we will calculate the value of I6. Thus, we have,
I6=(sin6x)dx
I6=(sin3x)2dx
Now, we will use a trigonometric identity here,
sin3θ=3sinθ4sin3θ
4sin3θ=3sinθsin3θ
sin3θ=3sinθsin3θ4
Thus, after using this identity, we will get,
I6=(3sinxsin3x4)2dx
I6=116(3sinxsin3x)2dx
Now, we will use the identity,
(ab)2=a2+b22ab
Thus, we will get,
I6=116(9sin2x+sin23x6sinxsin3x)dx
Now, here we will use two trigonometric identities,
cos2θ=12sin2θ
sin2θ=1cos2θ2
Similarly,
sin23θ=1cos6θ2
Also, 2 sin A sin B = cos (A – B) – cos (A + B)
Thus, we will get,
I6=116[92(1cos2x)+12(1cos6x)3(2sinxsin3x)]dx
I6=116[929cos2x2+12cos6x23(cos(x3x)cos(x+3x))] dx
I6=116[59cos2x2cos6x23(cos2xcos4x)] dx
I6=116[515cos2x2+3cos4xcos6x2] dx
I6=1165dx11615cos2x2dx+1163cos4xdx116cos6x2dx
Now, we will use some integration formulas here,
adx=ax+c
cosaxdx=sinaxa+c
Thus, we will get,
I6=[116(5x)+C5][116(15sin2x4)+C6]+[116(3sin4x4)+C7][116(cos6x12)+C8]
I6=5x16+C515sin2x64+C6+3sin4x64+C7sin6x192+C8
Considering the constants C5=C6=C7=C8=C9, we get,
I6=5x1615sin2x64+3sin4x64sin6x192+C9.....(iv)
Now, we have to find the value of 5I46I6. Thus, we will get,
5I46I6=5[3x8+sin4x32sin2x4+C4]6[5x1615sin2x64+3sin4x64sin6x192+C9]
5I46I6=15x8+5sin4x325sin2x4+5C415x8+45sin2x329sin4x32+sin6x326C9
Taking the constant, 5C46C9=C, we get,
5I46I6=18sin4x+532sin2x+sin6x32+C.....(v)
Now, we will use two trigonometric identities here,
sin2x=2sinxcosx
sin4x=2sin2xcos2x....(vi)
sin3x=3sinx4sin3x
sin6x=3sin2x4sin3(2x).....(vii)
Putting the values of sin 4x and sin 6x from (vi) and (vii) to (v), we will get,
5I46I6=18[2sin2xcos2x]+532sin2x+132[3sin2x4sin32x]+C
5I46I6=sin2xcos2x4+5sin2x32+3sin2x324sin32x32+C
5I46I6=sin2xcos2x4+sin2x4sin22x8+C
5I46I6=sin2x8[2cos2x+2sin22x]+C
5I46I6=sin2x8[2cos2x+2(1cos22x)]+C
5I46I6=sin2x8[1+cos22x2cos2x]+C
Hence, the option (c) is the right answer.

Note: We can also use the reduction formula to solve this question. Reduction formula for integral of the sine function is,
sinnxdx=1nsin(n1)xcosx+(n1)nsin(n2)xdx
nsinnxdx=sin(n1)xcosx+(n1)sin(n2)xdx
nIn=sin(n1)xcosx+(n1)In2
Now, we will put n = 6. Thus, we will get,
6I6=sin(61)xcosx+(61)I62
6I6=sin5xcosx+5I4
5I46I6=sin5xcosx
5I46I6=sin4x(sinxcosx)
Now, we will use sin 2x = 2 sin x cos x. Thus, we will get,
5I46I6=sin4x(sin2x2)=(sin2x)2(sin2x2)
Now, we will use the identity,
sin2x=1cos2x2
Thus, we get,
5I46I6=(1cos2x)24(sin2x2)
5I46I6=sin2x8[1+cos22x2cos2x]
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy