
If \[{{I}_{n}}=\int{{{\left( \sin x \right)}^{n}}dx,n\in N.}\] Then, \[5{{I}_{4}}-6{{I}_{6}}\] is equal to:
\[\text{(a) }\sin x.{{\left( \cos x \right)}^{5}}+C\]
\[\left( \text{b} \right)\text{ }\sin 2x.\cos 2x+C\]
\[\left( \text{c} \right)\text{ }\dfrac{\sin 2x}{8}\left[ {{\cos }^{2}}x+1-2\cos 2x \right]+C\]
\[\left( \text{d} \right)\text{ }\dfrac{\sin 2x}{8}\left[ {{\cos }^{2}}x+1+2\cos 2x \right]+C\]
Answer
599.7k+ views
Hint: To solve the question given above, we will first find out the values of \[{{I}_{4}}\text{ and }{{I}_{6}}\] by putting n = 4 and n = 6 respectively in the equation given. For the calculation of \[{{I}_{4}}\text{ and }{{I}_{6}},\] our main aim will be to convert higher powers of the sine function to the sine functions or cosine functions with single power. Then we will put the values of \[{{I}_{4}}\text{ and }{{I}_{6}}\text{ in }{{ 5I }_{4}}-6{{I}_{6}}\] and then solve.
Complete step-by-step answer:
In the first step, we are going to calculate the value of \[{{I}_{4}}.\] We know that,
\[{{I}_{n}}=\int{{{\left( \sin x \right)}^{n}}dx}\]
When we put n = 4 in the above equation, we get,
\[{{I}_{4}}=\int{{{\left( \sin x \right)}^{4}}dx}\]
Now, we have to find the value of \[{{I}_{4}}.\] As we know that the direct integration of \[{{\left( \sin x \right)}^{4}}\] does not exist, so we will try to reduce the power. For this, we will write \[{{\left( \sin x \right)}^{4}}\text{ as }{{\left( {{\sin }^{2}}x \right)}^{2}}\] with the help of the identity \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{b\times c}}.\] Thus, we will get,
\[{{I}_{4}}=\int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx}\]
Now, here we will use a trigonometric identity,
\[\cos 2\theta =1-2{{\sin }^{2}}\theta \]
\[\Rightarrow 1-\cos 2\theta =2{{\sin }^{2}}\theta \]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}\]
By using the above identity, we will get,
\[{{I}_{4}}={{\int{\left( \dfrac{1-\cos 2x}{2} \right)}}^{2}}dx\]
\[\Rightarrow {{I}_{4}}={{\int{\dfrac{\left( 1-\cos 2x \right)}{4}}}^{2}}dx\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}}dx\]
Now, we will use the identity,
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
Thus, we will get,
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)}dx.....\left( i \right)\]
Now, here we will use another trigonometric identity:
\[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
\[\Rightarrow 2{{\cos }^{2}}\theta =1+\cos 2\theta \]
\[\Rightarrow {{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
Putting \[\theta =2x,\] we will get,
\[\Rightarrow {{\cos }^{2}}2x=\dfrac{1+\cos 4x}{2}.....\left( ii \right)\]
Putting the value of \[{{\cos }^{2}}2x\] from (ii) to (i), we will get,
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+\dfrac{1+\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+\dfrac{1}{2}+\dfrac{\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( \dfrac{3}{2}+\dfrac{\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\dfrac{3}{2}dx}+\dfrac{1}{4}\int{\dfrac{\cos 4x}{2}dx}-\dfrac{1}{4}\int{2\cos 2xdx}\]
Now, here we will use the following integration formulas,
\[\int{adx}=ax+C\]
\[\int{\cos adx}=\dfrac{\sin ax}{a}+C\]
\[\Rightarrow {{I}_{4}}=\left[ \dfrac{1}{4}\left( \dfrac{3}{2}x \right)+{{C}_{1}} \right]+\left[ \dfrac{1}{4}\left( \dfrac{\sin 4x}{4} \right)\left( \dfrac{1}{2} \right)+{{C}_{2}} \right]-\left[ \dfrac{1}{4}\left( \dfrac{2\sin 2x}{2} \right)+{{C}_{3}} \right]\]
\[\Rightarrow {{I}_{4}}=\dfrac{3}{8}x+{{C}_{1}}+\dfrac{\sin 4x}{32}+{{C}_{2}}-\dfrac{\sin 2x}{4}+{{C}_{3}}\]
Considering the constants \[{{C}_{1}}={{C}_{2}}={{C}_{3}}={{C}_{4}},\] we get,
\[\Rightarrow {{I}_{4}}=\dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}+{{C}_{4}}.....\left( iii \right)\]
Now, similarly, we will calculate the value of \[{{I}_{6}}.\] Thus, we have,
\[{{I}_{6}}=\int{\left( {{\sin }^{6}}x \right)dx}\]
\[\Rightarrow {{I}_{6}}=\int{{{\left( {{\sin }^{3}}x \right)}^{2}}dx}\]
Now, we will use a trigonometric identity here,
\[\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta \]
\[\Rightarrow 4{{\sin }^{3}}\theta =3\sin \theta -\sin 3\theta \]
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{3\sin \theta -\sin 3\theta }{4}\]
Thus, after using this identity, we will get,
\[\Rightarrow {{I}_{6}}={{\int{\left( \dfrac{3\sin x-\sin 3x}{4} \right)}}^{2}}dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}{{\int{\left( 3\sin x-\sin 3x \right)}}^{2}}dx\]
Now, we will use the identity,
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left( 9{{\sin }^{2}}x+{{\sin }^{2}}3x-6\sin x\sin 3x \right)}dx\]
Now, here we will use two trigonometric identities,
\[\cos 2\theta =1-2{{\sin }^{2}}\theta \]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}\]
Similarly,
\[{{\sin }^{2}}3\theta =\dfrac{1-\cos 6\theta }{2}\]
Also, 2 sin A sin B = cos (A – B) – cos (A + B)
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ \dfrac{9}{2}\left( 1-\cos 2x \right)+\dfrac{1}{2}\left( 1-\cos 6x \right)-3\left( 2\sin x\sin 3x \right) \right]}dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ \dfrac{9}{2}-\dfrac{9\cos 2x}{2}+\dfrac{1}{2}-\dfrac{\cos 6x}{2}-3\left( \cos \left( x-3x \right)-\cos \left( x+3x \right) \right) \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ 5-\dfrac{9\cos 2x}{2}-\dfrac{\cos 6x}{2}-3\left( \cos 2x-\cos 4x \right) \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ 5-\dfrac{15\cos 2x}{2}+3\cos 4x-\dfrac{\cos 6x}{2} \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{5dx}-\dfrac{1}{16}\int{\dfrac{15\cos 2x}{2}}dx+\dfrac{1}{16}\int{3\cos 4xdx}-\dfrac{1}{16}\int{\dfrac{\cos 6x}{2}}dx\]
Now, we will use some integration formulas here,
\[\int{adx=ax+c}\]
\[\int{\cos axdx=\dfrac{\sin ax}{a}+c}\]
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\left[ \dfrac{1}{16}\left( 5x \right)+{{C}_{5}} \right]-\left[ \dfrac{1}{16}\left( \dfrac{15\sin 2x}{4} \right)+{{C}_{6}} \right]+\left[ \dfrac{1}{16}\left( \dfrac{3\sin 4x}{4} \right)+{{C}_{7}} \right]-\left[ \dfrac{1}{16}\left( \dfrac{\cos 6x}{12} \right)+{{C}_{8}} \right]\]
\[\Rightarrow {{I}_{6}}=\dfrac{5x}{16}+{{C}_{5}}-\dfrac{15\sin 2x}{64}+{{C}_{6}}+\dfrac{3\sin 4x}{64}+{{C}_{7}}-\dfrac{\sin 6x}{192}+{{C}_{8}}\]
Considering the constants \[{{C}_{5}}={{C}_{6}}={{C}_{7}}={{C}_{8}}={{C}_{9}},\] we get,
\[\Rightarrow {{I}_{6}}=\dfrac{5x}{16}-\dfrac{15\sin 2x}{64}+\dfrac{3\sin 4x}{64}-\dfrac{\sin 6x}{192}+{{C}_{9}}.....\left( iv \right)\]
Now, we have to find the value of \[5{{I}_{4}}-6{{I}_{6}}.\] Thus, we will get,
\[5{{I}_{4}}-6{{I}_{6}}=5\left[ \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}+{{C}_{4}} \right]-6\left[ \dfrac{5x}{16}-\dfrac{15\sin 2x}{64}+\dfrac{3\sin 4x}{64}-\dfrac{\sin 6x}{192}+{{C}_{9}} \right]\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{15x}{8}+\dfrac{5\sin 4x}{32}-\dfrac{5\sin 2x}{4}+5{{C}_{4}}-\dfrac{15x}{8}+\dfrac{45\sin 2x}{32}-\dfrac{9\sin 4x}{32}+\dfrac{\sin 6x}{32}-6{{C}_{9}}\]
Taking the constant, \[5{{C}_{4}}-6{{C}_{9}}=C,\] we get,
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-1}{8}\sin 4x+\dfrac{5}{32}\sin 2x+\dfrac{\sin 6x}{32}+C.....\left( v \right)\]
Now, we will use two trigonometric identities here,
\[\sin 2x=2\sin x\cos x\]
\[\Rightarrow \sin 4x=2\sin 2x\cos 2x....\left( vi \right)\]
\[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\Rightarrow \sin 6x=3\sin 2x-4{{\sin }^{3}}\left( 2x \right).....\left( vii \right)\]
Putting the values of sin 4x and sin 6x from (vi) and (vii) to (v), we will get,
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-1}{8}\left[ 2\sin 2x\cos 2x \right]+\dfrac{5}{32}\sin 2x+\dfrac{1}{32}\left[ 3\sin 2x-4{{\sin }^{3}}2x \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-\sin 2x\cos 2x}{4}+\dfrac{5\sin 2x}{32}+\dfrac{3\sin 2x}{32}-\dfrac{4{{\sin }^{3}}2x}{32}+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-\sin 2x\cos 2x}{4}+\dfrac{\sin 2x}{4}-\dfrac{{{\sin }^{2}}2x}{8}+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ -2\cos 2x+2-{{\sin }^{2}}2x \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ -2\cos 2x+2-\left( 1-{{\cos }^{2}}2x \right) \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ 1+{{\cos }^{2}}2x-2\cos 2x \right]+C\]
Hence, the option (c) is the right answer.
Note: We can also use the reduction formula to solve this question. Reduction formula for integral of the sine function is,
\[\int{{{\sin }^{n}}xdx}=\dfrac{-1}{n}{{\sin }^{\left( n-1 \right)}}x\cos x+\dfrac{\left( n-1 \right)}{n}\int{{{\sin }^{\left( n-2 \right)}}}xdx\]
\[\Rightarrow n\int{{{\sin }^{n}}xdx}=-{{\sin }^{\left( n-1 \right)}}x\cos x+\left( n-1 \right)\int{{{\sin }^{\left( n-2 \right)}}}xdx\]
\[\Rightarrow n{{I}_{n}}=-{{\sin }^{\left( n-1 \right)}}x\cos x+\left( n-1 \right){{I}_{n-2}}\]
Now, we will put n = 6. Thus, we will get,
\[\Rightarrow 6{{I}_{6}}=-{{\sin }^{\left( 6-1 \right)}}x\cos x+\left( 6-1 \right){{I}_{6-2}}\]
\[\Rightarrow 6{{I}_{6}}=-{{\sin }^{5}}x\cos x+5{{I}_{4}}\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{5}}x\cos x\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{4}}x\left( \sin x\cos x \right)\]
Now, we will use sin 2x = 2 sin x cos x. Thus, we will get,
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{4}}x\left( \dfrac{\sin 2x}{2} \right)={{\left( {{\sin }^{2}}x \right)}^{2}}\left( \dfrac{\sin 2x}{2} \right)\]
Now, we will use the identity,
\[{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}\]
Thus, we get,
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}=\dfrac{{{\left( 1-\cos 2x \right)}^{2}}}{4}\left( \dfrac{\sin 2x}{2} \right)\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ 1+{{\cos }^{2}}2x-2\cos 2x \right]\]
Complete step-by-step answer:
In the first step, we are going to calculate the value of \[{{I}_{4}}.\] We know that,
\[{{I}_{n}}=\int{{{\left( \sin x \right)}^{n}}dx}\]
When we put n = 4 in the above equation, we get,
\[{{I}_{4}}=\int{{{\left( \sin x \right)}^{4}}dx}\]
Now, we have to find the value of \[{{I}_{4}}.\] As we know that the direct integration of \[{{\left( \sin x \right)}^{4}}\] does not exist, so we will try to reduce the power. For this, we will write \[{{\left( \sin x \right)}^{4}}\text{ as }{{\left( {{\sin }^{2}}x \right)}^{2}}\] with the help of the identity \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{b\times c}}.\] Thus, we will get,
\[{{I}_{4}}=\int{{{\left( {{\sin }^{2}}x \right)}^{2}}dx}\]
Now, here we will use a trigonometric identity,
\[\cos 2\theta =1-2{{\sin }^{2}}\theta \]
\[\Rightarrow 1-\cos 2\theta =2{{\sin }^{2}}\theta \]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}\]
By using the above identity, we will get,
\[{{I}_{4}}={{\int{\left( \dfrac{1-\cos 2x}{2} \right)}}^{2}}dx\]
\[\Rightarrow {{I}_{4}}={{\int{\dfrac{\left( 1-\cos 2x \right)}{4}}}^{2}}dx\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{{{\left( 1-\cos 2x \right)}^{2}}}dx\]
Now, we will use the identity,
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.\]
Thus, we will get,
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+{{\cos }^{2}}2x-2\cos 2x \right)}dx.....\left( i \right)\]
Now, here we will use another trigonometric identity:
\[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
\[\Rightarrow 2{{\cos }^{2}}\theta =1+\cos 2\theta \]
\[\Rightarrow {{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}\]
Putting \[\theta =2x,\] we will get,
\[\Rightarrow {{\cos }^{2}}2x=\dfrac{1+\cos 4x}{2}.....\left( ii \right)\]
Putting the value of \[{{\cos }^{2}}2x\] from (ii) to (i), we will get,
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+\dfrac{1+\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( 1+\dfrac{1}{2}+\dfrac{\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\left( \dfrac{3}{2}+\dfrac{\cos 4x}{2}-2\cos 2x \right)dx}\]
\[\Rightarrow {{I}_{4}}=\dfrac{1}{4}\int{\dfrac{3}{2}dx}+\dfrac{1}{4}\int{\dfrac{\cos 4x}{2}dx}-\dfrac{1}{4}\int{2\cos 2xdx}\]
Now, here we will use the following integration formulas,
\[\int{adx}=ax+C\]
\[\int{\cos adx}=\dfrac{\sin ax}{a}+C\]
\[\Rightarrow {{I}_{4}}=\left[ \dfrac{1}{4}\left( \dfrac{3}{2}x \right)+{{C}_{1}} \right]+\left[ \dfrac{1}{4}\left( \dfrac{\sin 4x}{4} \right)\left( \dfrac{1}{2} \right)+{{C}_{2}} \right]-\left[ \dfrac{1}{4}\left( \dfrac{2\sin 2x}{2} \right)+{{C}_{3}} \right]\]
\[\Rightarrow {{I}_{4}}=\dfrac{3}{8}x+{{C}_{1}}+\dfrac{\sin 4x}{32}+{{C}_{2}}-\dfrac{\sin 2x}{4}+{{C}_{3}}\]
Considering the constants \[{{C}_{1}}={{C}_{2}}={{C}_{3}}={{C}_{4}},\] we get,
\[\Rightarrow {{I}_{4}}=\dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}+{{C}_{4}}.....\left( iii \right)\]
Now, similarly, we will calculate the value of \[{{I}_{6}}.\] Thus, we have,
\[{{I}_{6}}=\int{\left( {{\sin }^{6}}x \right)dx}\]
\[\Rightarrow {{I}_{6}}=\int{{{\left( {{\sin }^{3}}x \right)}^{2}}dx}\]
Now, we will use a trigonometric identity here,
\[\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta \]
\[\Rightarrow 4{{\sin }^{3}}\theta =3\sin \theta -\sin 3\theta \]
\[\Rightarrow {{\sin }^{3}}\theta =\dfrac{3\sin \theta -\sin 3\theta }{4}\]
Thus, after using this identity, we will get,
\[\Rightarrow {{I}_{6}}={{\int{\left( \dfrac{3\sin x-\sin 3x}{4} \right)}}^{2}}dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}{{\int{\left( 3\sin x-\sin 3x \right)}}^{2}}dx\]
Now, we will use the identity,
\[{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\]
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left( 9{{\sin }^{2}}x+{{\sin }^{2}}3x-6\sin x\sin 3x \right)}dx\]
Now, here we will use two trigonometric identities,
\[\cos 2\theta =1-2{{\sin }^{2}}\theta \]
\[\Rightarrow {{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2}\]
Similarly,
\[{{\sin }^{2}}3\theta =\dfrac{1-\cos 6\theta }{2}\]
Also, 2 sin A sin B = cos (A – B) – cos (A + B)
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ \dfrac{9}{2}\left( 1-\cos 2x \right)+\dfrac{1}{2}\left( 1-\cos 6x \right)-3\left( 2\sin x\sin 3x \right) \right]}dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ \dfrac{9}{2}-\dfrac{9\cos 2x}{2}+\dfrac{1}{2}-\dfrac{\cos 6x}{2}-3\left( \cos \left( x-3x \right)-\cos \left( x+3x \right) \right) \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ 5-\dfrac{9\cos 2x}{2}-\dfrac{\cos 6x}{2}-3\left( \cos 2x-\cos 4x \right) \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{\left[ 5-\dfrac{15\cos 2x}{2}+3\cos 4x-\dfrac{\cos 6x}{2} \right]}\text{ }dx\]
\[\Rightarrow {{I}_{6}}=\dfrac{1}{16}\int{5dx}-\dfrac{1}{16}\int{\dfrac{15\cos 2x}{2}}dx+\dfrac{1}{16}\int{3\cos 4xdx}-\dfrac{1}{16}\int{\dfrac{\cos 6x}{2}}dx\]
Now, we will use some integration formulas here,
\[\int{adx=ax+c}\]
\[\int{\cos axdx=\dfrac{\sin ax}{a}+c}\]
Thus, we will get,
\[\Rightarrow {{I}_{6}}=\left[ \dfrac{1}{16}\left( 5x \right)+{{C}_{5}} \right]-\left[ \dfrac{1}{16}\left( \dfrac{15\sin 2x}{4} \right)+{{C}_{6}} \right]+\left[ \dfrac{1}{16}\left( \dfrac{3\sin 4x}{4} \right)+{{C}_{7}} \right]-\left[ \dfrac{1}{16}\left( \dfrac{\cos 6x}{12} \right)+{{C}_{8}} \right]\]
\[\Rightarrow {{I}_{6}}=\dfrac{5x}{16}+{{C}_{5}}-\dfrac{15\sin 2x}{64}+{{C}_{6}}+\dfrac{3\sin 4x}{64}+{{C}_{7}}-\dfrac{\sin 6x}{192}+{{C}_{8}}\]
Considering the constants \[{{C}_{5}}={{C}_{6}}={{C}_{7}}={{C}_{8}}={{C}_{9}},\] we get,
\[\Rightarrow {{I}_{6}}=\dfrac{5x}{16}-\dfrac{15\sin 2x}{64}+\dfrac{3\sin 4x}{64}-\dfrac{\sin 6x}{192}+{{C}_{9}}.....\left( iv \right)\]
Now, we have to find the value of \[5{{I}_{4}}-6{{I}_{6}}.\] Thus, we will get,
\[5{{I}_{4}}-6{{I}_{6}}=5\left[ \dfrac{3x}{8}+\dfrac{\sin 4x}{32}-\dfrac{\sin 2x}{4}+{{C}_{4}} \right]-6\left[ \dfrac{5x}{16}-\dfrac{15\sin 2x}{64}+\dfrac{3\sin 4x}{64}-\dfrac{\sin 6x}{192}+{{C}_{9}} \right]\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{15x}{8}+\dfrac{5\sin 4x}{32}-\dfrac{5\sin 2x}{4}+5{{C}_{4}}-\dfrac{15x}{8}+\dfrac{45\sin 2x}{32}-\dfrac{9\sin 4x}{32}+\dfrac{\sin 6x}{32}-6{{C}_{9}}\]
Taking the constant, \[5{{C}_{4}}-6{{C}_{9}}=C,\] we get,
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-1}{8}\sin 4x+\dfrac{5}{32}\sin 2x+\dfrac{\sin 6x}{32}+C.....\left( v \right)\]
Now, we will use two trigonometric identities here,
\[\sin 2x=2\sin x\cos x\]
\[\Rightarrow \sin 4x=2\sin 2x\cos 2x....\left( vi \right)\]
\[\sin 3x=3\sin x-4{{\sin }^{3}}x\]
\[\Rightarrow \sin 6x=3\sin 2x-4{{\sin }^{3}}\left( 2x \right).....\left( vii \right)\]
Putting the values of sin 4x and sin 6x from (vi) and (vii) to (v), we will get,
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-1}{8}\left[ 2\sin 2x\cos 2x \right]+\dfrac{5}{32}\sin 2x+\dfrac{1}{32}\left[ 3\sin 2x-4{{\sin }^{3}}2x \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-\sin 2x\cos 2x}{4}+\dfrac{5\sin 2x}{32}+\dfrac{3\sin 2x}{32}-\dfrac{4{{\sin }^{3}}2x}{32}+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{-\sin 2x\cos 2x}{4}+\dfrac{\sin 2x}{4}-\dfrac{{{\sin }^{2}}2x}{8}+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ -2\cos 2x+2-{{\sin }^{2}}2x \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ -2\cos 2x+2-\left( 1-{{\cos }^{2}}2x \right) \right]+C\]
\[5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ 1+{{\cos }^{2}}2x-2\cos 2x \right]+C\]
Hence, the option (c) is the right answer.
Note: We can also use the reduction formula to solve this question. Reduction formula for integral of the sine function is,
\[\int{{{\sin }^{n}}xdx}=\dfrac{-1}{n}{{\sin }^{\left( n-1 \right)}}x\cos x+\dfrac{\left( n-1 \right)}{n}\int{{{\sin }^{\left( n-2 \right)}}}xdx\]
\[\Rightarrow n\int{{{\sin }^{n}}xdx}=-{{\sin }^{\left( n-1 \right)}}x\cos x+\left( n-1 \right)\int{{{\sin }^{\left( n-2 \right)}}}xdx\]
\[\Rightarrow n{{I}_{n}}=-{{\sin }^{\left( n-1 \right)}}x\cos x+\left( n-1 \right){{I}_{n-2}}\]
Now, we will put n = 6. Thus, we will get,
\[\Rightarrow 6{{I}_{6}}=-{{\sin }^{\left( 6-1 \right)}}x\cos x+\left( 6-1 \right){{I}_{6-2}}\]
\[\Rightarrow 6{{I}_{6}}=-{{\sin }^{5}}x\cos x+5{{I}_{4}}\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{5}}x\cos x\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{4}}x\left( \sin x\cos x \right)\]
Now, we will use sin 2x = 2 sin x cos x. Thus, we will get,
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}={{\sin }^{4}}x\left( \dfrac{\sin 2x}{2} \right)={{\left( {{\sin }^{2}}x \right)}^{2}}\left( \dfrac{\sin 2x}{2} \right)\]
Now, we will use the identity,
\[{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}\]
Thus, we get,
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}=\dfrac{{{\left( 1-\cos 2x \right)}^{2}}}{4}\left( \dfrac{\sin 2x}{2} \right)\]
\[\Rightarrow 5{{I}_{4}}-6{{I}_{6}}=\dfrac{\sin 2x}{8}\left[ 1+{{\cos }^{2}}2x-2\cos 2x \right]\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

