
If in a triangle ABC, we define \[x=\tan \left( \dfrac{B-C}{2} \right)\tan \left( \dfrac{A}{2} \right)\], $y=\tan \left( \dfrac{C-A}{2} \right)\tan \left( \dfrac{B}{2} \right)$, $z=\tan \left( \dfrac{A-B}{2} \right)\tan \left( \dfrac{C}{2} \right)$, then show that x + y + z = – xyz.
Answer
574.8k+ views
Hint: We start solving the problem by using half angle formula from the properties of triangle. We use these formulas to find the values of x, y and z. We convert all these x, y and z in the form of $\dfrac{1+x}{1-x},\dfrac{1+y}{1-y},\dfrac{1+z}{1-z}$. We multiply $\dfrac{1+x}{1-x},\dfrac{1+y}{1-y},\dfrac{1+z}{1-z}$ to each other and make necessary calculations to get the required result.
Complete step by step answer:
Given that we have a triangle ABC and we define \[x=\tan \left( \dfrac{B-C}{2} \right)\tan \left( \dfrac{A}{2} \right)\], $y=\tan \left( \dfrac{C-A}{2} \right)\tan \left( \dfrac{B}{2} \right)$, $z=\tan \left( \dfrac{A-B}{2} \right)\tan \left( \dfrac{C}{2} \right)$. We need to prove that x + y + z = – xyz.
Let us draw the triangle ABC,
We know that from properties of triangles we have $\tan \left( \dfrac{B-C}{2} \right)=\dfrac{\left( b-c \right)}{\left( b+c \right)}.\cot \left( \dfrac{A}{2} \right)$ ---(1).
According to the problem, \[x=\tan \left( \dfrac{B-C}{2} \right)\tan \left( \dfrac{A}{2} \right)\].
From equation (1),
$\Rightarrow $ \[x=\dfrac{\left( b-c \right)}{\left( b+c \right)}.\cot \left( \dfrac{A}{2} \right).\tan \left( \dfrac{A}{2} \right)\].
$\Rightarrow $ $x=\dfrac{\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1+x \right)=1+\left( \dfrac{b-c}{b+c} \right)$.
$\Rightarrow $ $\left( 1+x \right)=\dfrac{\left( b+c \right)+\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1+x \right)=\dfrac{2b}{\left( b+c \right)}$ ---(2).
$\Rightarrow $ $\left( 1-x \right)=1-\left( \dfrac{b-c}{b+c} \right)$.
$\Rightarrow $ $\left( 1-x \right)=\dfrac{\left( b+c \right)-\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1-x \right)=\dfrac{2c}{\left( b+c \right)}$ ---(3).
Using equations (2) and (3), $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}=\dfrac{\left( \dfrac{2b}{b+c} \right)}{\left( \dfrac{2c}{b+c} \right)}$.
$\Rightarrow $ $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}=\dfrac{2b}{2c}$ ---(4).
We know that from properties of triangles we have $\tan \left( \dfrac{C-A}{2} \right)=\dfrac{\left( c-a \right)}{\left( c+a \right)}.\cot \left( \dfrac{B}{2} \right)$ ---(5).
According to the problem, \[y=\tan \left( \dfrac{C-A}{2} \right)\tan \left( \dfrac{B}{2} \right)\].
From equation (5),
$\Rightarrow $ \[y=\dfrac{\left( c-a \right)}{\left( c+a \right)}.\cot \left( \dfrac{B}{2} \right).\tan \left( \dfrac{B}{2} \right)\].
$\Rightarrow $ $y=\dfrac{\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1+y \right)=1+\left( \dfrac{c-a}{c+a} \right)$.
$\Rightarrow $ $\left( 1+y \right)=\dfrac{\left( c+a \right)+\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1+y \right)=\dfrac{2c}{\left( c+a \right)}$ ---(6).
$\Rightarrow $ $\left( 1-y \right)=1-\left( \dfrac{c-a}{c+a} \right)$.
$\Rightarrow $ $\left( 1-y \right)=\dfrac{\left( c+a \right)-\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1-y \right)=\dfrac{2a}{\left( c+a \right)}$ ---(7).
Using equations (6) and (7), $\dfrac{\left( 1+y \right)}{\left( 1-y \right)}=\dfrac{\left( \dfrac{2c}{c+a} \right)}{\left( \dfrac{2a}{c+a} \right)}$.
$\Rightarrow $$\dfrac{\left( 1+y \right)}{\left( 1-y \right)}=\dfrac{2c}{2a}$ ---(8).
We know that from properties of triangles we have $\tan \left( \dfrac{A-B}{2} \right)=\dfrac{\left( a-b \right)}{\left( a+b \right)}.\cot \left( \dfrac{C}{2} \right)$ ---(9).
According to the problem, \[z=\tan \left( \dfrac{A-B}{2} \right)\tan \left( \dfrac{C}{2} \right)\].
From equation (9),
$\Rightarrow $ \[z=\dfrac{\left( a-b \right)}{\left( a+b \right)}.\cot \left( \dfrac{C}{2} \right).\tan \left( \dfrac{C}{2} \right)\].
$\Rightarrow $ $z=\dfrac{\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1+z \right)=1+\left( \dfrac{a-b}{a+b} \right)$.
$\Rightarrow $ $\left( 1+z \right)=\dfrac{\left( a+b \right)+\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1+z \right)=\dfrac{2a}{\left( a+b \right)}$ ---(10).
$\Rightarrow $ $\left( 1-z \right)=1-\left( \dfrac{a-b}{a+b} \right)$.
$\Rightarrow $ $\left( 1-z \right)=\dfrac{\left( a+b \right)-\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1-z \right)=\dfrac{2b}{\left( a+b \right)}$ ---(11).
Using equations (10) and (11), $\dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\dfrac{\left( \dfrac{2a}{a+b} \right)}{\left( \dfrac{2b}{a+b} \right)}$.
$\Rightarrow $ $\dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\dfrac{2a}{2b}$ ---(12).
We multiply all the results obtained from equations (4), (8) and (12), $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}\times \dfrac{\left( 1+y \right)}{\left( 1-y \right)}\times \dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\left( \dfrac{2b}{2c} \right)\times \left( \dfrac{2c}{2a} \right)\times \left( \dfrac{2a}{2b} \right)$.
$\Rightarrow $ $\dfrac{\left( 1+x \right)\times \left( 1+y \right)\times \left( 1+z \right)}{\left( 1-x \right)\times \left( 1-y \right)\times \left( 1-z \right)}=\dfrac{8abc}{8abc}$.
$\Rightarrow $ $\dfrac{\left( 1+x+y+xy \right)\times \left( 1+z \right)}{\left( 1-x-y+xy \right)\times \left( 1-z \right)}=1$.
$\Rightarrow $ $\dfrac{\left( 1+x+y+xy+z+xz+yz+xyz \right)}{\left( 1-x-y+xy-z+xz+yz-xyz \right)}=1$.
$\Rightarrow $ $1+x+y+z+xy+xz+yz+xyz=1-x-y-z+xy+xz+yz-xyz$.
$\Rightarrow $ $1-1+x+y+z+x+y+z+xy+yz+xz-xy-yz-zx=-xyz-xyz$.
$\Rightarrow $ \[2x+2y+2z=-2xyz\].
$\Rightarrow $ \[x+y+z=-xyz\].
∴ We have proved \[x+y+z=-xyz\].
Note: We should not solve for x, y and z individually in the middle of the problem again, as it is already given in the problem. Similarly, we get problems to find the value of A, B and C if the given condition is satisfied.
Complete step by step answer:
Given that we have a triangle ABC and we define \[x=\tan \left( \dfrac{B-C}{2} \right)\tan \left( \dfrac{A}{2} \right)\], $y=\tan \left( \dfrac{C-A}{2} \right)\tan \left( \dfrac{B}{2} \right)$, $z=\tan \left( \dfrac{A-B}{2} \right)\tan \left( \dfrac{C}{2} \right)$. We need to prove that x + y + z = – xyz.
Let us draw the triangle ABC,
We know that from properties of triangles we have $\tan \left( \dfrac{B-C}{2} \right)=\dfrac{\left( b-c \right)}{\left( b+c \right)}.\cot \left( \dfrac{A}{2} \right)$ ---(1).
According to the problem, \[x=\tan \left( \dfrac{B-C}{2} \right)\tan \left( \dfrac{A}{2} \right)\].
From equation (1),
$\Rightarrow $ \[x=\dfrac{\left( b-c \right)}{\left( b+c \right)}.\cot \left( \dfrac{A}{2} \right).\tan \left( \dfrac{A}{2} \right)\].
$\Rightarrow $ $x=\dfrac{\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1+x \right)=1+\left( \dfrac{b-c}{b+c} \right)$.
$\Rightarrow $ $\left( 1+x \right)=\dfrac{\left( b+c \right)+\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1+x \right)=\dfrac{2b}{\left( b+c \right)}$ ---(2).
$\Rightarrow $ $\left( 1-x \right)=1-\left( \dfrac{b-c}{b+c} \right)$.
$\Rightarrow $ $\left( 1-x \right)=\dfrac{\left( b+c \right)-\left( b-c \right)}{\left( b+c \right)}$.
$\Rightarrow $ $\left( 1-x \right)=\dfrac{2c}{\left( b+c \right)}$ ---(3).
Using equations (2) and (3), $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}=\dfrac{\left( \dfrac{2b}{b+c} \right)}{\left( \dfrac{2c}{b+c} \right)}$.
$\Rightarrow $ $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}=\dfrac{2b}{2c}$ ---(4).
We know that from properties of triangles we have $\tan \left( \dfrac{C-A}{2} \right)=\dfrac{\left( c-a \right)}{\left( c+a \right)}.\cot \left( \dfrac{B}{2} \right)$ ---(5).
According to the problem, \[y=\tan \left( \dfrac{C-A}{2} \right)\tan \left( \dfrac{B}{2} \right)\].
From equation (5),
$\Rightarrow $ \[y=\dfrac{\left( c-a \right)}{\left( c+a \right)}.\cot \left( \dfrac{B}{2} \right).\tan \left( \dfrac{B}{2} \right)\].
$\Rightarrow $ $y=\dfrac{\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1+y \right)=1+\left( \dfrac{c-a}{c+a} \right)$.
$\Rightarrow $ $\left( 1+y \right)=\dfrac{\left( c+a \right)+\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1+y \right)=\dfrac{2c}{\left( c+a \right)}$ ---(6).
$\Rightarrow $ $\left( 1-y \right)=1-\left( \dfrac{c-a}{c+a} \right)$.
$\Rightarrow $ $\left( 1-y \right)=\dfrac{\left( c+a \right)-\left( c-a \right)}{\left( c+a \right)}$.
$\Rightarrow $ $\left( 1-y \right)=\dfrac{2a}{\left( c+a \right)}$ ---(7).
Using equations (6) and (7), $\dfrac{\left( 1+y \right)}{\left( 1-y \right)}=\dfrac{\left( \dfrac{2c}{c+a} \right)}{\left( \dfrac{2a}{c+a} \right)}$.
$\Rightarrow $$\dfrac{\left( 1+y \right)}{\left( 1-y \right)}=\dfrac{2c}{2a}$ ---(8).
We know that from properties of triangles we have $\tan \left( \dfrac{A-B}{2} \right)=\dfrac{\left( a-b \right)}{\left( a+b \right)}.\cot \left( \dfrac{C}{2} \right)$ ---(9).
According to the problem, \[z=\tan \left( \dfrac{A-B}{2} \right)\tan \left( \dfrac{C}{2} \right)\].
From equation (9),
$\Rightarrow $ \[z=\dfrac{\left( a-b \right)}{\left( a+b \right)}.\cot \left( \dfrac{C}{2} \right).\tan \left( \dfrac{C}{2} \right)\].
$\Rightarrow $ $z=\dfrac{\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1+z \right)=1+\left( \dfrac{a-b}{a+b} \right)$.
$\Rightarrow $ $\left( 1+z \right)=\dfrac{\left( a+b \right)+\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1+z \right)=\dfrac{2a}{\left( a+b \right)}$ ---(10).
$\Rightarrow $ $\left( 1-z \right)=1-\left( \dfrac{a-b}{a+b} \right)$.
$\Rightarrow $ $\left( 1-z \right)=\dfrac{\left( a+b \right)-\left( a-b \right)}{\left( a+b \right)}$.
$\Rightarrow $ $\left( 1-z \right)=\dfrac{2b}{\left( a+b \right)}$ ---(11).
Using equations (10) and (11), $\dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\dfrac{\left( \dfrac{2a}{a+b} \right)}{\left( \dfrac{2b}{a+b} \right)}$.
$\Rightarrow $ $\dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\dfrac{2a}{2b}$ ---(12).
We multiply all the results obtained from equations (4), (8) and (12), $\dfrac{\left( 1+x \right)}{\left( 1-x \right)}\times \dfrac{\left( 1+y \right)}{\left( 1-y \right)}\times \dfrac{\left( 1+z \right)}{\left( 1-z \right)}=\left( \dfrac{2b}{2c} \right)\times \left( \dfrac{2c}{2a} \right)\times \left( \dfrac{2a}{2b} \right)$.
$\Rightarrow $ $\dfrac{\left( 1+x \right)\times \left( 1+y \right)\times \left( 1+z \right)}{\left( 1-x \right)\times \left( 1-y \right)\times \left( 1-z \right)}=\dfrac{8abc}{8abc}$.
$\Rightarrow $ $\dfrac{\left( 1+x+y+xy \right)\times \left( 1+z \right)}{\left( 1-x-y+xy \right)\times \left( 1-z \right)}=1$.
$\Rightarrow $ $\dfrac{\left( 1+x+y+xy+z+xz+yz+xyz \right)}{\left( 1-x-y+xy-z+xz+yz-xyz \right)}=1$.
$\Rightarrow $ $1+x+y+z+xy+xz+yz+xyz=1-x-y-z+xy+xz+yz-xyz$.
$\Rightarrow $ $1-1+x+y+z+x+y+z+xy+yz+xz-xy-yz-zx=-xyz-xyz$.
$\Rightarrow $ \[2x+2y+2z=-2xyz\].
$\Rightarrow $ \[x+y+z=-xyz\].
∴ We have proved \[x+y+z=-xyz\].
Note: We should not solve for x, y and z individually in the middle of the problem again, as it is already given in the problem. Similarly, we get problems to find the value of A, B and C if the given condition is satisfied.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


