
If $I$ is the identity matrix of order $2$ and $A=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ , then for $n\ge 1$, mathematical induction gives
(a) ${{A}^{n}}=nA-(n-1)I$
(b) ${{A}^{n}}=nA+(n-1)I$
(c) ${{A}^{n}}={{2}^{n}}A-(n+1)I$
(d) ${{A}^{n}}={{2}^{n-1}}A-(n-1)I$
Answer
585.9k+ views
Hint: The principle of mathematical induction states that a statement $P(n)$ is true for $n\in \mathbb{N}$ if $P(1)$ is true and assuming $P(k)$ is true, $P(k+1)$ can be proven to be true. We will first formulate a statement $P(n)$. Then we will prove that $P(n)$ is true for $n\in \mathbb{N}$ using the principle of mathematical induction.
Complete step-by-step answer:
The statement of the principle of mathematical induction is as follows,
Suppose there is a given statement $P(n)$ involving $n\in \mathbb{N}$ such that
(i) The statement is true for $n=1$, that is, $P(1)$ is true, and
(ii) If the statement is true for $n=k$ where $k$ is some positive integer, then the statement is also true for $n=k+1$. That is, the truth of $P(k)$ implies the truth of $P(k+1)$.
Then $P(n)$ is true for all $n\in \mathbb{N}$.
We have $A=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ . Let us look at the square of this matrix,
${{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$ .
Now, we consider the next power of $A$,
${{A}^{3}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]=3~\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]-(3-1)\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ .
Looking at the pattern, we can define a statement $P(n)$ in the following manner,
$P(n):={{A}^{n}}=nA-(n-1)I$
For the base case, $n=1$ , we have
$A=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=1\cdot A-0\cdot I$ .
Therefore, $P(1)$ is true. Now, let us assume that $P(k)$ is true. Therefore we have, ${{A}^{k}}=kA-(k-1)I$.
Now, consider $P(k+1)$. We will first calculate the LHS,
$\begin{align}
& LHS={{A}^{k+1}} \\
& ={{A}^{k}}\cdot A \\
& =\left[ \begin{matrix}
1 & k \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & k+1 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Calculating the RHS, we get
$\begin{align}
& RHS=(k+1)A-(k+1-1)I \\
& =\left[ \begin{matrix}
k+1 & k+1 \\
0 & k+1 \\
\end{matrix} \right]-\left[ \begin{matrix}
k & 0 \\
0 & k \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & k+1 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Hence, we have $LHS=RHS$ and $P(k+1)$ is true for any $k$. Hence, $P(n)$ is true for $n\in \mathbb{N}$.
So, the correct answer is “Option A”.
Note: We have to be careful while formulating the statement for the principle of mathematical induction. The matrix multiplication needs to be done properly, as there is a possibility to make minor mistakes which can lead to incorrect answers. Proving $P(k+1)$ is true is the tricky part in the mathematical induction.
Complete step-by-step answer:
The statement of the principle of mathematical induction is as follows,
Suppose there is a given statement $P(n)$ involving $n\in \mathbb{N}$ such that
(i) The statement is true for $n=1$, that is, $P(1)$ is true, and
(ii) If the statement is true for $n=k$ where $k$ is some positive integer, then the statement is also true for $n=k+1$. That is, the truth of $P(k)$ implies the truth of $P(k+1)$.
Then $P(n)$ is true for all $n\in \mathbb{N}$.
We have $A=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ . Let us look at the square of this matrix,
${{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$ .
Now, we consider the next power of $A$,
${{A}^{3}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]=3~\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]-(3-1)\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ .
Looking at the pattern, we can define a statement $P(n)$ in the following manner,
$P(n):={{A}^{n}}=nA-(n-1)I$
For the base case, $n=1$ , we have
$A=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=1\cdot A-0\cdot I$ .
Therefore, $P(1)$ is true. Now, let us assume that $P(k)$ is true. Therefore we have, ${{A}^{k}}=kA-(k-1)I$.
Now, consider $P(k+1)$. We will first calculate the LHS,
$\begin{align}
& LHS={{A}^{k+1}} \\
& ={{A}^{k}}\cdot A \\
& =\left[ \begin{matrix}
1 & k \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & k+1 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Calculating the RHS, we get
$\begin{align}
& RHS=(k+1)A-(k+1-1)I \\
& =\left[ \begin{matrix}
k+1 & k+1 \\
0 & k+1 \\
\end{matrix} \right]-\left[ \begin{matrix}
k & 0 \\
0 & k \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & k+1 \\
0 & 1 \\
\end{matrix} \right]
\end{align}$
Hence, we have $LHS=RHS$ and $P(k+1)$ is true for any $k$. Hence, $P(n)$ is true for $n\in \mathbb{N}$.
So, the correct answer is “Option A”.
Note: We have to be careful while formulating the statement for the principle of mathematical induction. The matrix multiplication needs to be done properly, as there is a possibility to make minor mistakes which can lead to incorrect answers. Proving $P(k+1)$ is true is the tricky part in the mathematical induction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

