
If \[g\] is twice differentiable function and \[f\left( x \right) = xg\left( {{x^2}} \right)\], how do you find in terms of \[g\], \[g'\], and \[g''\]?
Answer
532.2k+ views
Hint: Here in this question, we have to differentiate the given function \[f\left( x \right) = xg\left( {{x^2}} \right)\] and express of in terms of \[g\], \[g'\], and \[g''\]. First, we need to use the product rule for differentiating the function \[f\left( x \right)\] and lateral by chain rule also differentiate the function \[g\left( x \right)\] and second time differentiate the function \[f\left( x \right)\] and by further simplification using the standard differentiating formula to get the required solution.
Complete step by step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Consider the given function
\[ \Rightarrow \,\,\,\,f\left( x \right) = xg\left( {{x^2}} \right)\]---------- (1)
Differentiate function \[f\left( x \right)\] with respect to x
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {xg\left( {{x^2}} \right)} \right)\]
Now, we need to use the product rule of differentiation \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}\left( v \right) + v\dfrac{d}{{dx}}\left( u \right)\], then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \dfrac{d}{{dx}}\left( x \right)\]
As we know, the standard formula: \[\dfrac{{dx}}{{dx}} = 1\], and represent \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = f'\left( x \right)\].
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \left( 1 \right)\]
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)\]
Now, then by the chain rule, we have:
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
As we know the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)2x\]
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = 2xg'\left( {{x^2}} \right)\]----------(2)
Substitute (2) in equation (1), then
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \left( {2xg'\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f'\left( x \right) = 2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)\]--------(3)
Again, differentiating equation (3) a second time using product rule, then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)} \right)\]
Represent \[\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = f''(x)\].
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {2{x^2}} \right) + \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right)\]
using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)2\left( {2x} \right) + g'\left( {{x^2}} \right)\left( {2x} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 4x\,g'\left( {{x^2}} \right) + 2x\,g'\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]--------(4)
And, again by the chain rule, we have:
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\,2x\]
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = 2x\,g''\left( {{x^2}} \right)\]-----------(5)
Substitute equation (5) in (4), then
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]
On simplification, we get
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 4{x^3}g''\left( {{x^2}} \right) + 6x\,g'\left( {{x^2}} \right)\]
Hence, it’s a required solution.
Note: When solving these types of questions, the student must know about the standard differentiation formulas. If the function is a product of two terms and the both terms are the function of x the we use the product rule of differentiation to the function and behaviour of the chain rule while solving.
Complete step by step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
Consider the given function
\[ \Rightarrow \,\,\,\,f\left( x \right) = xg\left( {{x^2}} \right)\]---------- (1)
Differentiate function \[f\left( x \right)\] with respect to x
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {xg\left( {{x^2}} \right)} \right)\]
Now, we need to use the product rule of differentiation \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{d}{{dx}}\left( v \right) + v\dfrac{d}{{dx}}\left( u \right)\], then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \dfrac{d}{{dx}}\left( x \right)\]
As we know, the standard formula: \[\dfrac{{dx}}{{dx}} = 1\], and represent \[\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = f'\left( x \right)\].
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right) \cdot \left( 1 \right)\]
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)\]
Now, then by the chain rule, we have:
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
As we know the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = g'\left( {{x^2}} \right)2x\]
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right) = 2xg'\left( {{x^2}} \right)\]----------(2)
Substitute (2) in equation (1), then
\[ \Rightarrow \,\,\,\,f'\left( x \right) = x \cdot \left( {2xg'\left( {{x^2}} \right)} \right) + g\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f'\left( x \right) = 2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)\]--------(3)
Again, differentiating equation (3) a second time using product rule, then
\[ \Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {2{x^2}g'\left( {{x^2}} \right) + g\left( {{x^2}} \right)} \right)\]
Represent \[\dfrac{d}{{dx}}\left( {f'\left( x \right)} \right) = f''(x)\].
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)\dfrac{d}{{dx}}\left( {2{x^2}} \right) + \dfrac{d}{{dx}}\left( {g\left( {{x^2}} \right)} \right)\]
using the formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], then
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + g'\left( {{x^2}} \right)2\left( {2x} \right) + g'\left( {{x^2}} \right)\left( {2x} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 4x\,g'\left( {{x^2}} \right) + 2x\,g'\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]--------(4)
And, again by the chain rule, we have:
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\dfrac{d}{{dx}}\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = g''\left( {{x^2}} \right)\,\,2x\]
\[ \Rightarrow \,\,\,\dfrac{d}{{dx}}\left( {g'\left( {{x^2}} \right)} \right) = 2x\,g''\left( {{x^2}} \right)\]-----------(5)
Substitute equation (5) in (4), then
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 2{x^2}\left( {2x\,g''\left( {{x^2}} \right)} \right) + 6x\,g'\left( {{x^2}} \right)\]
On simplification, we get
\[ \Rightarrow \,\,\,\,f''\left( x \right) = 4{x^3}g''\left( {{x^2}} \right) + 6x\,g'\left( {{x^2}} \right)\]
Hence, it’s a required solution.
Note: When solving these types of questions, the student must know about the standard differentiation formulas. If the function is a product of two terms and the both terms are the function of x the we use the product rule of differentiation to the function and behaviour of the chain rule while solving.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

