
If $f(x)=\left\{ \begin{align}
& 2{{x}^{2}}+1,\text{ }x\le 1 \\
& 4{{x}^{3}}-1,\text{ }x\ge 1 \\
\end{align} \right\},$ then $\int\limits_{0}^{2}{f(x)dx}$ is
(a) $\dfrac{47}{3}$
(b) $\dfrac{50}{3}$
(c) $\dfrac{1}{3}$
(d) $\dfrac{47}{2}$
Answer
615k+ views
Hint:Break the limit of the integral from 0 to 1 and from 1 to 2 and then put the value of the function under their respective domain and integrate. Solve the two integrals separately.
Complete step-by-step answer:
We have been given that the function ‘$2{{x}^{2}}+1$’ is defined only for the values of $x$ less than or equal to 1 and the function ‘$4{{x}^{3}}-1$’ is defined for the values of $x$ greater than or equal to 1. Therefore, let us break the given limit of the integral. The given integral can be written as:
$\int\limits_{0}^{2}{f(x)dx}=\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}$
Substituting the value of $f(x)$ under their respective integral domains we get,
$\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}$
Let us assume that the value of the above integral is ‘$I$’. Therefore,
\[I=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}\]
We know that, $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Therefore, applying this rule in the above integral, we have,
$I=\left[ \dfrac{2{{x}^{3}}}{3}+x \right]_{0}^{1}+\left[ \dfrac{4{{x}^{4}}}{4}-x \right]_{1}^{2}$
Substituting the value of suitable limits we get,
$\begin{align}
& I=\left[ \left( \dfrac{2\times {{1}^{3}}}{3}+1 \right)-\left( \dfrac{2\times {{0}^{3}}}{3}+0 \right) \right]+\left[ \left( \dfrac{4\times {{2}^{4}}}{4}-2 \right)-\left( \dfrac{4\times {{1}^{4}}}{4}-1 \right) \right] \\
& =\left[ \dfrac{2}{3}+1 \right]+\left[ \left( 16-2 \right)-\left( 1-1 \right) \right] \\
& =\dfrac{5}{3}+14 \\
& =\dfrac{47}{3} \\
\end{align}$
Hence, option (a) is the correct answer.
Note: One may note that we have broken the given integral into two parts. One integral having limits ranging from 0 to 1 and the other having limits ranging from 0 to 2. This step was necessary because the two given functions are defined for different ranges of ‘$x$’, so, we cannot integrate them under one integral sign having limit ranging from 0 to 2.
Complete step-by-step answer:
We have been given that the function ‘$2{{x}^{2}}+1$’ is defined only for the values of $x$ less than or equal to 1 and the function ‘$4{{x}^{3}}-1$’ is defined for the values of $x$ greater than or equal to 1. Therefore, let us break the given limit of the integral. The given integral can be written as:
$\int\limits_{0}^{2}{f(x)dx}=\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}$
Substituting the value of $f(x)$ under their respective integral domains we get,
$\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}$
Let us assume that the value of the above integral is ‘$I$’. Therefore,
\[I=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}\]
We know that, $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Therefore, applying this rule in the above integral, we have,
$I=\left[ \dfrac{2{{x}^{3}}}{3}+x \right]_{0}^{1}+\left[ \dfrac{4{{x}^{4}}}{4}-x \right]_{1}^{2}$
Substituting the value of suitable limits we get,
$\begin{align}
& I=\left[ \left( \dfrac{2\times {{1}^{3}}}{3}+1 \right)-\left( \dfrac{2\times {{0}^{3}}}{3}+0 \right) \right]+\left[ \left( \dfrac{4\times {{2}^{4}}}{4}-2 \right)-\left( \dfrac{4\times {{1}^{4}}}{4}-1 \right) \right] \\
& =\left[ \dfrac{2}{3}+1 \right]+\left[ \left( 16-2 \right)-\left( 1-1 \right) \right] \\
& =\dfrac{5}{3}+14 \\
& =\dfrac{47}{3} \\
\end{align}$
Hence, option (a) is the correct answer.
Note: One may note that we have broken the given integral into two parts. One integral having limits ranging from 0 to 1 and the other having limits ranging from 0 to 2. This step was necessary because the two given functions are defined for different ranges of ‘$x$’, so, we cannot integrate them under one integral sign having limit ranging from 0 to 2.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

