
If for nonzero x, \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] where \[a \ne b\] , then \[f(2) = \]
A. \[\dfrac{{3(2b + 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
B. \[\dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
C. \[\dfrac{{3(3a - 2b)}}{{2\left( {{a^2} - {b^2}} \right)}}\]
D. \[\dfrac{6}{{a + b}}\]
Answer
578.1k+ views
Hint: In the given equation \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] , first put x=2 and then put \[x = \dfrac{1}{2}\] you will get two equations containing \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\] and then eliminate \[f\left( {\dfrac{1}{2}} \right)\] to get the value of \[f(2)\] .
Complete step by step answer:
As discussed in the hint let us do the same.
We will put x=2 in \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] and will get
\[af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5........................(i)\]
Also if we put \[f\left( {\dfrac{1}{2}} \right)\] we will surely get
\[af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5........................(ii)\]
Now in the equations we have both \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\]
So let us eliminate \[f\left( {\dfrac{1}{2}} \right)\]
For that we have to first find the value of \[f\left( {\dfrac{1}{2}} \right)\] in terms of \[f(2)\]
Let us get the value of \[f\left( {\dfrac{1}{2}} \right)\] from equation (ii)
\[\begin{array}{l}
\therefore af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = - 3\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) = - 3 - bf\left( 2 \right)\\
\Rightarrow f\left( {\dfrac{1}{2}} \right) = \dfrac{{ - 3 - bf\left( 2 \right)}}{a}
\end{array}\]
Now as we have the value of \[f\left( {\dfrac{1}{2}} \right)\] let us put the same value in equation (i) we will get it as
\[\begin{array}{l}
\therefore af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5\\
\Rightarrow af(2) + b\left( {\dfrac{{ - 3 - bf\left( 2 \right)}}{a}} \right) = \dfrac{{1 - 10}}{2}\\
\Rightarrow af(2) - \dfrac{{3b}}{a} - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2}\\
\Rightarrow af(2) - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2} + \dfrac{{3b}}{a}\\
\Rightarrow f(2)\left( {\dfrac{{{a^2} - {b^2}}}{a}} \right) = \dfrac{{ - 9a + 6b}}{{2a}}\\
\Rightarrow f(2)\left( {{a^2} - {b^2}} \right) = \dfrac{{ - 9a + 6b}}{2}\\
\Rightarrow f(2) = \dfrac{{ - 9a + 6b}}{{2\left( {{a^2} - {b^2}} \right)}}\\
\Rightarrow f(2) = \dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}
\end{array}\]
So, the correct answer is “Option B”.
Note: we can also do this question by elimination method rather than substitution method just by multiplying the whole equation (ii) by \[\dfrac{b}{a}\] which will make the coefficient of \[f\left( {\dfrac{1}{2}} \right)\] equal to that of we have in equation (i) from where we can eliminate \[f\left( {\dfrac{1}{2}} \right)\] .
Complete step by step answer:
As discussed in the hint let us do the same.
We will put x=2 in \[af(x) + bf\left( {\dfrac{1}{x}} \right) = \dfrac{1}{x} - 5\] and will get
\[af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5........................(i)\]
Also if we put \[f\left( {\dfrac{1}{2}} \right)\] we will surely get
\[af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5........................(ii)\]
Now in the equations we have both \[f(2)\] and \[f\left( {\dfrac{1}{2}} \right)\]
So let us eliminate \[f\left( {\dfrac{1}{2}} \right)\]
For that we have to first find the value of \[f\left( {\dfrac{1}{2}} \right)\] in terms of \[f(2)\]
Let us get the value of \[f\left( {\dfrac{1}{2}} \right)\] from equation (ii)
\[\begin{array}{l}
\therefore af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = 2 - 5\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) + bf\left( 2 \right) = - 3\\
\Rightarrow af\left( {\dfrac{1}{2}} \right) = - 3 - bf\left( 2 \right)\\
\Rightarrow f\left( {\dfrac{1}{2}} \right) = \dfrac{{ - 3 - bf\left( 2 \right)}}{a}
\end{array}\]
Now as we have the value of \[f\left( {\dfrac{1}{2}} \right)\] let us put the same value in equation (i) we will get it as
\[\begin{array}{l}
\therefore af(2) + bf\left( {\dfrac{1}{2}} \right) = \dfrac{1}{2} - 5\\
\Rightarrow af(2) + b\left( {\dfrac{{ - 3 - bf\left( 2 \right)}}{a}} \right) = \dfrac{{1 - 10}}{2}\\
\Rightarrow af(2) - \dfrac{{3b}}{a} - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2}\\
\Rightarrow af(2) - \dfrac{{{b^2}f(2)}}{a} = - \dfrac{9}{2} + \dfrac{{3b}}{a}\\
\Rightarrow f(2)\left( {\dfrac{{{a^2} - {b^2}}}{a}} \right) = \dfrac{{ - 9a + 6b}}{{2a}}\\
\Rightarrow f(2)\left( {{a^2} - {b^2}} \right) = \dfrac{{ - 9a + 6b}}{2}\\
\Rightarrow f(2) = \dfrac{{ - 9a + 6b}}{{2\left( {{a^2} - {b^2}} \right)}}\\
\Rightarrow f(2) = \dfrac{{3(2b - 3a)}}{{2\left( {{a^2} - {b^2}} \right)}}
\end{array}\]
So, the correct answer is “Option B”.
Note: we can also do this question by elimination method rather than substitution method just by multiplying the whole equation (ii) by \[\dfrac{b}{a}\] which will make the coefficient of \[f\left( {\dfrac{1}{2}} \right)\] equal to that of we have in equation (i) from where we can eliminate \[f\left( {\dfrac{1}{2}} \right)\] .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

