
If $f\left( xy \right)=f\left( x \right).f\left( y \right)\forall x,\And f'\left( 1 \right)=2,$then test the differentiability of $f\left( x \right)$.
Answer
617.1k+ views
Hint: Since we have to test the differentiability, we have to find the derivative of the function. We can find derivatives using the first principle of derivative and using the functional relation given in the question.
Complete step-by-step answer:
It is given in the question \[f\left( xy \right)=f\left( x \right).f\left( y \right)\text{ }\And f'\left( 1 \right)=2\].
In such types of questions, to test the differentiability of the function$f\left( x \right)$, it is required to find the derivative $f'\left( x \right)$. To find $f'\left( x \right)$, we have to follow certain steps;
1. We will use the first principle to find $f'\left( x \right)$.
According to first principle;
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right).f\left( y \right)$ we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right).f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$;
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( x \right)\dfrac{\left( f\left( 1+\dfrac{h}{x} \right)-1 \right)}{h} \\
\end{align}$
Since the limit is with respect to $h$, we get functions of $x$ out of the limit.
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-1}{h}.........\left( II \right)$
We cannot proceed further in step 1. So now, we will proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right).f\left( y \right)$
Let us assume $x=1,y=1$.
$\begin{align}
& \Rightarrow f\left( 1 \right)=f\left( 1 \right)\times f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)={{\left( f\left( 1 \right) \right)}^{2}} \\
\end{align}$
Cancelling $f\left( 1 \right)$ both sides, we get;
$f\left( 1 \right)=1..............\left( III \right)$
From $\left( III \right)$, we will substitute $1$ as $f\left( 1 \right)$ in $\left( II \right)$,
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{h}$
Let us multiple and divide the denominator with $x$.
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since the limit is with respect to $h$, we can take $\dfrac{1}{x}$ out of the limit. Also, we can replace $\underset{h\to 0}{\mathop{\lim }}\,$ by $\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$.
$f'\left( x \right)=\dfrac{f\left( x \right)}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}.........\left( IV \right)$
Consider the first principle
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us put $x=1,h=\dfrac{h}{x}$.
\[\Rightarrow f'\left( 1 \right)=\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( V \right)\]
So, substituting \[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}\]from $\left( V \right)$ in $\left( IV \right)$, we get;
\[\Rightarrow f'\left( x \right)=\dfrac{f\left( x \right)}{x}.f'\left( 1 \right)\]
It is given in the question \[f'\left( 1 \right)=2\].
$\Rightarrow f'\left( x \right)=\dfrac{2f\left( x \right)}{x}..........\left( VI \right)$
Let us substitute $f\left( x \right)=y$
$\Rightarrow f'\left( x \right)=\dfrac{dy}{dx}$
Substituting $f\left( x \right)$and $\text{ }f'\left( x \right)$ in $\left( VI \right)$;
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{2y}{x} \\
& \Rightarrow \dfrac{1}{y}dy=2.\dfrac{1}{x}dx \\
\end{align}$
Integrating both sides;
$\int{\dfrac{1}{y}dy=2\int{\dfrac{1}{x}dx}}$
We know $\int{\dfrac{1}{x}dx=lnx}$ and $\int{\dfrac{1}{y}dy=lny}$;
\[\begin{align}
& \Rightarrow lny=2lnx\text{ } \\
& \Rightarrow lny=ln{{x}^{2}},\text{ }\because 2lnx=ln{{x}^{2}} \\
& \Rightarrow y={{x}^{2}} \\
\end{align}\]
Differentiating with respect to $x$;
$y'=2x$
Let us plot the graph of $y'$;
Since $y'=2x$ is a continuous function, we can say $y$ is differentiable for all $x.$
Sine $y'=2x$, we can say that $f\left( x \right)$ is differentiable $\forall x\in R.$
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. Like it was given in the question that $f'\left( 1 \right)=2$ that is why we had to find the value of $f\left( 1 \right)$ in step 2.
Complete step-by-step answer:
It is given in the question \[f\left( xy \right)=f\left( x \right).f\left( y \right)\text{ }\And f'\left( 1 \right)=2\].
In such types of questions, to test the differentiability of the function$f\left( x \right)$, it is required to find the derivative $f'\left( x \right)$. To find $f'\left( x \right)$, we have to follow certain steps;
1. We will use the first principle to find $f'\left( x \right)$.
According to first principle;
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right).f\left( y \right)$ we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right).f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$;
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( x \right)\dfrac{\left( f\left( 1+\dfrac{h}{x} \right)-1 \right)}{h} \\
\end{align}$
Since the limit is with respect to $h$, we get functions of $x$ out of the limit.
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-1}{h}.........\left( II \right)$
We cannot proceed further in step 1. So now, we will proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right).f\left( y \right)$
Let us assume $x=1,y=1$.
$\begin{align}
& \Rightarrow f\left( 1 \right)=f\left( 1 \right)\times f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)={{\left( f\left( 1 \right) \right)}^{2}} \\
\end{align}$
Cancelling $f\left( 1 \right)$ both sides, we get;
$f\left( 1 \right)=1..............\left( III \right)$
From $\left( III \right)$, we will substitute $1$ as $f\left( 1 \right)$ in $\left( II \right)$,
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{h}$
Let us multiple and divide the denominator with $x$.
$\Rightarrow f'\left( x \right)=f\left( x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since the limit is with respect to $h$, we can take $\dfrac{1}{x}$ out of the limit. Also, we can replace $\underset{h\to 0}{\mathop{\lim }}\,$ by $\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$.
$f'\left( x \right)=\dfrac{f\left( x \right)}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}.........\left( IV \right)$
Consider the first principle
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Let us put $x=1,h=\dfrac{h}{x}$.
\[\Rightarrow f'\left( 1 \right)=\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( V \right)\]
So, substituting \[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}\]from $\left( V \right)$ in $\left( IV \right)$, we get;
\[\Rightarrow f'\left( x \right)=\dfrac{f\left( x \right)}{x}.f'\left( 1 \right)\]
It is given in the question \[f'\left( 1 \right)=2\].
$\Rightarrow f'\left( x \right)=\dfrac{2f\left( x \right)}{x}..........\left( VI \right)$
Let us substitute $f\left( x \right)=y$
$\Rightarrow f'\left( x \right)=\dfrac{dy}{dx}$
Substituting $f\left( x \right)$and $\text{ }f'\left( x \right)$ in $\left( VI \right)$;
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{2y}{x} \\
& \Rightarrow \dfrac{1}{y}dy=2.\dfrac{1}{x}dx \\
\end{align}$
Integrating both sides;
$\int{\dfrac{1}{y}dy=2\int{\dfrac{1}{x}dx}}$
We know $\int{\dfrac{1}{x}dx=lnx}$ and $\int{\dfrac{1}{y}dy=lny}$;
\[\begin{align}
& \Rightarrow lny=2lnx\text{ } \\
& \Rightarrow lny=ln{{x}^{2}},\text{ }\because 2lnx=ln{{x}^{2}} \\
& \Rightarrow y={{x}^{2}} \\
\end{align}\]
Differentiating with respect to $x$;
$y'=2x$
Let us plot the graph of $y'$;
Since $y'=2x$ is a continuous function, we can say $y$ is differentiable for all $x.$
Sine $y'=2x$, we can say that $f\left( x \right)$ is differentiable $\forall x\in R.$
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. Like it was given in the question that $f'\left( 1 \right)=2$ that is why we had to find the value of $f\left( 1 \right)$ in step 2.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

