
If \[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \right){\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\] and \[g\left( {\dfrac{5}{4}} \right) = 1\] , then \[gof\left( x \right)\] is equal to
\[\left( 1 \right){\text{ }}1\]
\[\left( 2 \right){\text{ }} - 1\]
\[\left( 3 \right){\text{ 2}}\]
\[\left( 4 \right){\text{ }} - 2\]
Answer
507.6k+ views
Hint: To get the value of \[gof\left( x \right)\] we need to simplify the function \[f\left( x \right)\] . Then apply the formulas of \[\sin \left( {A + B} \right){\text{ = }}\sin A\cos B + \cos A\sin B\] and \[\cos \left( {A + B} \right){\text{ = }}\cos A\cos B - \sin A\sin B\] in the given equation of function. Then substitute the values of trigonometric functions when needed and solve it further. After getting the value of \[f\left( x \right)\] , find the value of \[gof\left( x \right)\] by using the given value of \[g\left( {\dfrac{5}{4}} \right)\] .
Complete step-by-step solution:
First we have to simplify the function \[f\left( x \right)\] . So, it is given that
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \right){\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\] ------ $(i)$
By applying the formula of \[\sin \left( {A + B} \right){\text{ = }}\sin A\cos B + \cos A\sin B\] in the equation $(i)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\]
Value of \[\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2}\] and the value of \[\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2}\] . Now by substituting these values in the above equation we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\] -------- $(ii)$
Again by applying the formula, \[\cos \left( {A + B} \right){\text{ = }}\cos A\cos B - \sin A\sin B\] in the equation $(ii)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\cos x\cos \dfrac{\pi }{3} - \sin x\sin \dfrac{\pi }{3}} \right]\]
Value of \[\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2}\] and the value of \[\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2}\] . Now by substituting these values in the above equation we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{1}{2}\cos x - \dfrac{{\sqrt 3 }}{2}\sin x} \right]\]
By taking L.C.M inside the brackets we have
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{{\sin x + \sqrt 3 \cos x}}{2}} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{{\cos x - \sqrt 3 \sin x}}{2}} \right]\]
Take \[\dfrac{1}{4}\] and \[\dfrac{1}{2}\] common from the brackets,
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\left( {\sin x + \sqrt 3 \cos x} \right)^2}{\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right)\] ------ $(iii)$
By applying the formula, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the equation $(iii)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}\left( {{{\sin }^2}x + 3{{\cos }^2}x + 2\sqrt 3 \sin x\cos x} \right){\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right)\]
Now multiply \[\dfrac{1}{4}\] and \[\dfrac{1}{2}\] with the terms inside the bracket.
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\sin ^2}x + \dfrac{3}{4}{\cos ^2}x + \dfrac{{\sqrt 3 }}{2}\sin x\cos x{\text{ }} + {\text{ }}\dfrac{1}{2}{\cos ^2}x - \dfrac{{\sqrt 3 }}{2}\sin x\cos x\]
By adding \[{\sin ^2}x\] terms and \[{\cos ^2}x\] terms we get
\[f\left( x \right) = \dfrac{{4{{\sin }^2}x + {{\sin }^2}x}}{4} + \dfrac{{3{{\cos }^2}x + 2{{\cos }^2}x}}{4}\]
\[f\left( x \right) = \dfrac{{5{{\sin }^2}x}}{4} + \dfrac{{5{{\cos }^2}x}}{4}\]
Taking \[\dfrac{5}{4}\] common we get
\[f\left( x \right) = \dfrac{5}{4}\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
And we all know that \[{\sin ^2}x + {\cos ^2}x = 1\] . Therefore,
\[f\left( x \right) = \dfrac{5}{4}\left( 1 \right)\]
\[ \Rightarrow f\left( x \right) = \dfrac{5}{4}\]
According to the question we have to find the value of \[gof\left( x \right)\] .
And here the required value of \[f\left( x \right)\] is \[\dfrac{5}{4}\] . So,
\[gof\left( x \right){\text{ }} = {\text{ }}g\left( {f\left( x \right)} \right){\text{ = }}g\left( {\dfrac{5}{4}} \right)\]
And it is given in the question that \[g\left( {\dfrac{5}{4}} \right){\text{ = }}1\] . Therefore, the value of \[gof\left( x \right){\text{ }} = {\text{ 1}}\]
Hence, the correct option is \[\left( 1 \right){\text{ }}1\]
Note: \[gof\left( x \right)\] means \[f\left( x \right)\] function is in \[g\left( x \right)\] function. The notation \[gof\] is read as “ g of f ”. \[gof\left( x \right)\] is a composite function. To solve \[gof\left( x \right)\] always solve \[f\left( x \right)\] first. \[gof\] is formed by the composition of g and f.
Complete step-by-step solution:
First we have to simplify the function \[f\left( x \right)\] . So, it is given that
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\sin ^2}\left( {x + \dfrac{\pi }{3}} \right){\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\] ------ $(i)$
By applying the formula of \[\sin \left( {A + B} \right){\text{ = }}\sin A\cos B + \cos A\sin B\] in the equation $(i)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\sin x\cos \dfrac{\pi }{3} + \cos x\sin \dfrac{\pi }{3}} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\]
Value of \[\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2}\] and the value of \[\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2}\] . Now by substituting these values in the above equation we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\cos \left( {x + \dfrac{\pi }{3}} \right)\] -------- $(ii)$
Again by applying the formula, \[\cos \left( {A + B} \right){\text{ = }}\cos A\cos B - \sin A\sin B\] in the equation $(ii)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\cos x\cos \dfrac{\pi }{3} - \sin x\sin \dfrac{\pi }{3}} \right]\]
Value of \[\cos \dfrac{\pi }{3}{\text{ = }}\dfrac{1}{2}\] and the value of \[\sin \dfrac{\pi }{3}{\text{ = }}\dfrac{{\sqrt 3 }}{2}\] . Now by substituting these values in the above equation we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{1}{2}\sin x + \dfrac{{\sqrt 3 }}{2}\cos x} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{1}{2}\cos x - \dfrac{{\sqrt 3 }}{2}\sin x} \right]\]
By taking L.C.M inside the brackets we have
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}{\left[ {\dfrac{{\sin x + \sqrt 3 \cos x}}{2}} \right]^2}{\text{ }} + {\text{ }}\cos x\left[ {\dfrac{{\cos x - \sqrt 3 \sin x}}{2}} \right]\]
Take \[\dfrac{1}{4}\] and \[\dfrac{1}{2}\] common from the brackets,
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\left( {\sin x + \sqrt 3 \cos x} \right)^2}{\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right)\] ------ $(iii)$
By applying the formula, \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\] in the equation $(iii)$ we get
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}\left( {{{\sin }^2}x + 3{{\cos }^2}x + 2\sqrt 3 \sin x\cos x} \right){\text{ }} + {\text{ }}\dfrac{1}{2}\left( {{{\cos }^2}x - \sqrt 3 \sin x\cos x} \right)\]
Now multiply \[\dfrac{1}{4}\] and \[\dfrac{1}{2}\] with the terms inside the bracket.
\[f\left( x \right) = {\sin ^2}x{\text{ }} + {\text{ }}\dfrac{1}{4}{\sin ^2}x + \dfrac{3}{4}{\cos ^2}x + \dfrac{{\sqrt 3 }}{2}\sin x\cos x{\text{ }} + {\text{ }}\dfrac{1}{2}{\cos ^2}x - \dfrac{{\sqrt 3 }}{2}\sin x\cos x\]
By adding \[{\sin ^2}x\] terms and \[{\cos ^2}x\] terms we get
\[f\left( x \right) = \dfrac{{4{{\sin }^2}x + {{\sin }^2}x}}{4} + \dfrac{{3{{\cos }^2}x + 2{{\cos }^2}x}}{4}\]
\[f\left( x \right) = \dfrac{{5{{\sin }^2}x}}{4} + \dfrac{{5{{\cos }^2}x}}{4}\]
Taking \[\dfrac{5}{4}\] common we get
\[f\left( x \right) = \dfrac{5}{4}\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\]
And we all know that \[{\sin ^2}x + {\cos ^2}x = 1\] . Therefore,
\[f\left( x \right) = \dfrac{5}{4}\left( 1 \right)\]
\[ \Rightarrow f\left( x \right) = \dfrac{5}{4}\]
According to the question we have to find the value of \[gof\left( x \right)\] .
And here the required value of \[f\left( x \right)\] is \[\dfrac{5}{4}\] . So,
\[gof\left( x \right){\text{ }} = {\text{ }}g\left( {f\left( x \right)} \right){\text{ = }}g\left( {\dfrac{5}{4}} \right)\]
And it is given in the question that \[g\left( {\dfrac{5}{4}} \right){\text{ = }}1\] . Therefore, the value of \[gof\left( x \right){\text{ }} = {\text{ 1}}\]
Hence, the correct option is \[\left( 1 \right){\text{ }}1\]
Note: \[gof\left( x \right)\] means \[f\left( x \right)\] function is in \[g\left( x \right)\] function. The notation \[gof\] is read as “ g of f ”. \[gof\left( x \right)\] is a composite function. To solve \[gof\left( x \right)\] always solve \[f\left( x \right)\] first. \[gof\] is formed by the composition of g and f.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

