
If \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\],\[\left| x \right| < 1\], then\[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]is equal to:
A.\[2f\left( x \right)\]
B.\[2f\left( {{x^2}} \right)\]
C.\[{\left( {f\left( x \right)} \right)^2}\]
D.\[{\left( {f\left( x \right)} \right)^3}\]
Answer
555k+ views
Hint: Here we will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] by substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the function \[f\left( x \right)\]. Then we will simplify the equation to get the answer in terms of the main function that is \[f\left( x \right)\].
Complete step-by-step answer:
Given function is \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]……………….\[\left( 1 \right)\]
We will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]. Therefore, substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the equation\[\left( 1 \right)\], we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{1 - \dfrac{{2x}}{{1 + {x^2}}}}}{{1 + \dfrac{{2x}}{{1 + {x^2}}}}}} \right)\]
Now, we will solve and simplify the above equation. So, by taking \[1 + {x^2}\] common in both the numerator and denominator, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}} \right) = {\log _e}\left( {\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2} + 2x}}} \right)\]
Now, we can clearly see that the numerator and the denominator is the perfect square of \[1 - x\] and \[1 + x\] respectively. So, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = {\log _e}{\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}\]
Now as we know this the property of the logarithmic function that \[\log {a^b} = b\log a\].
Applying the property of logarithmic function, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]
Now from the equation \[\left( 1 \right)\] we know that \[{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\] is equal to \[f\left( x \right)\]. Therefore, we can write
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2f\left( x \right)\]
Hence, \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] is equal to \[2f\left( x \right)\].
So, option A is the correct option.
Note: Here, it is important to rewrite the function whose value is to be found out in such a way that the function changes in terms of the given value. So, that we can easily substitute the values and find the answer. Also to solve this question we need to keep in mind the basic logarithmic properties. Few properties of the logarithmic function is:
(1)\[\log a + \log b = \log ab\]
(2)\[\log a - \log b = \log \dfrac{a}{b}\]
(3)\[\log {a^b} = b\log a\]
Complete step-by-step answer:
Given function is \[f\left( x \right) = {\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]……………….\[\left( 1 \right)\]
We will find the value of \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\]. Therefore, substituting the value of \[x\] as \[\dfrac{{2x}}{{1 + {x^2}}}\] in the equation\[\left( 1 \right)\], we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{1 - \dfrac{{2x}}{{1 + {x^2}}}}}{{1 + \dfrac{{2x}}{{1 + {x^2}}}}}} \right)\]
Now, we will solve and simplify the above equation. So, by taking \[1 + {x^2}\] common in both the numerator and denominator, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}} \right) = {\log _e}\left( {\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2} + 2x}}} \right)\]
Now, we can clearly see that the numerator and the denominator is the perfect square of \[1 - x\] and \[1 + x\] respectively. So, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = {\log _e}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = {\log _e}{\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}\]
Now as we know this the property of the logarithmic function that \[\log {a^b} = b\log a\].
Applying the property of logarithmic function, we get
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\]
Now from the equation \[\left( 1 \right)\] we know that \[{\log _e}\left( {\dfrac{{1 - x}}{{1 + x}}} \right)\] is equal to \[f\left( x \right)\]. Therefore, we can write
\[ \Rightarrow f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) = 2f\left( x \right)\]
Hence, \[f\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] is equal to \[2f\left( x \right)\].
So, option A is the correct option.
Note: Here, it is important to rewrite the function whose value is to be found out in such a way that the function changes in terms of the given value. So, that we can easily substitute the values and find the answer. Also to solve this question we need to keep in mind the basic logarithmic properties. Few properties of the logarithmic function is:
(1)\[\log a + \log b = \log ab\]
(2)\[\log a - \log b = \log \dfrac{a}{b}\]
(3)\[\log {a^b} = b\log a\]
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

