
If $f\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} $, then $f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = $
Answer
537.3k+ views
Hint: Given the function. We have to find the integral of the function. First, find the value of $f\left( x \right)$. Then find the value of $f\left( {\dfrac{1}{x}} \right)$ by replacing the $x$ by $\dfrac{1}{x}$in the function. Then, add the functions and apply the quotient rule of logarithms to the second integral. Then, simplify the expression by canceling out the common terms. Then, replace the logarithmic function at the numerator by another variable u. Then evaluate the integral and again replace the variable by logarithmic function.
Complete step by step solution:
First, we will find the value of $f\left( x \right)$.
$f\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} $
Let the function in terms of t be $f\left( t \right) = \int {\dfrac{{\ln t}}{{1 + t}}dt} $
Let $\dfrac{1}{x} = t$. Find the derivative of both sides, we get:
$\begin{gathered}
\left( {\dfrac{1}{x}} \right) = \dfrac{{dt}}{{dx}} \\
- \dfrac{1}{{{x^2}}}dx = dt \\
\end{gathered} $
Then, find the value of $f\left( {\dfrac{1}{x}} \right)$ by substituting the values.
$ \Rightarrow f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Now, find the value of $f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Now, apply the quotient property of logarithms to the second integration.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln 1 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Substitute $\ln 1 = 0$ into the expression, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{0 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} - \int {\dfrac{{x\ln x}}{{1 + x}}\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)dx} $
Simplify the expression, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{{x\left( {1 + x} \right)}}\left( {dx} \right)} $
Now, apply the formula $\dfrac{1}{{x\left( {1 + x} \right)}} = \dfrac{1}{x} - \dfrac{1}{{x + 1}}$ to the expression.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{x}dx} - \int {\dfrac{{\ln x}}{{1 + x}}dx} $
We will cancel out the common terms.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln x}}{x}dx} $
Substitute $u = \ln x$ into the integral and differentiate both sides, we get:
$\dfrac{{du}}{{dx}} = \dfrac{1}{x}$
Multiply $dx$ on both sides, we get:
$du = \dfrac{{dx}}{x}$
Replace $\ln x$ by $u$ and $\dfrac{{dx}}{x}$ by $du$ into the integral.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {udu} $
Apply the power rule of integration, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{{{u^2}}}{2} + C$
Replace $u$ by $\ln x$, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{1}{2}{\left( {\ln x} \right)^2} + C$.
Final answer: Hence the value of $f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$ is $\dfrac{1}{2}{\left( {\ln x} \right)^2} + C$.
Note: In such types of questions the quotient rule of logarithms can be applied. The quotient rule is given by $\ln \left( {\dfrac{x}{y}} \right) = \ln x - \ln y$. Also, the derivative of $\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right)$ is $\ln x$. The power rule of integration is given by $\int {{x^a}dx} = \dfrac{{{x^{a + 1}}}}{{a + 1}}$. Students may forget to add the constant of integration after solving the integral.
Complete step by step solution:
First, we will find the value of $f\left( x \right)$.
$f\left( x \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} $
Let the function in terms of t be $f\left( t \right) = \int {\dfrac{{\ln t}}{{1 + t}}dt} $
Let $\dfrac{1}{x} = t$. Find the derivative of both sides, we get:
$\begin{gathered}
\left( {\dfrac{1}{x}} \right) = \dfrac{{dt}}{{dx}} \\
- \dfrac{1}{{{x^2}}}dx = dt \\
\end{gathered} $
Then, find the value of $f\left( {\dfrac{1}{x}} \right)$ by substituting the values.
$ \Rightarrow f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Now, find the value of $f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln \dfrac{1}{x}}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Now, apply the quotient property of logarithms to the second integration.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln 1 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
Substitute $\ln 1 = 0$ into the expression, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{0 - \ln x}}{{1 + \dfrac{1}{x}}}\left( { - \dfrac{1}{{{x^2}}}} \right)dx} $
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} - \int {\dfrac{{x\ln x}}{{1 + x}}\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)dx} $
Simplify the expression, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{{x\left( {1 + x} \right)}}\left( {dx} \right)} $
Now, apply the formula $\dfrac{1}{{x\left( {1 + x} \right)}} = \dfrac{1}{x} - \dfrac{1}{{x + 1}}$ to the expression.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{lnx}}{{1 + x}}dx} + \int {\dfrac{{\ln x}}{x}dx} - \int {\dfrac{{\ln x}}{{1 + x}}dx} $
We will cancel out the common terms.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {\dfrac{{\ln x}}{x}dx} $
Substitute $u = \ln x$ into the integral and differentiate both sides, we get:
$\dfrac{{du}}{{dx}} = \dfrac{1}{x}$
Multiply $dx$ on both sides, we get:
$du = \dfrac{{dx}}{x}$
Replace $\ln x$ by $u$ and $\dfrac{{dx}}{x}$ by $du$ into the integral.
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \int {udu} $
Apply the power rule of integration, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{{{u^2}}}{2} + C$
Replace $u$ by $\ln x$, we get:
$ \Rightarrow f\left( x \right) + f\left( {\dfrac{1}{x}} \right) = \dfrac{1}{2}{\left( {\ln x} \right)^2} + C$.
Final answer: Hence the value of $f\left( x \right) + f\left( {\dfrac{1}{x}} \right)$ is $\dfrac{1}{2}{\left( {\ln x} \right)^2} + C$.
Note: In such types of questions the quotient rule of logarithms can be applied. The quotient rule is given by $\ln \left( {\dfrac{x}{y}} \right) = \ln x - \ln y$. Also, the derivative of $\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right)$ is $\ln x$. The power rule of integration is given by $\int {{x^a}dx} = \dfrac{{{x^{a + 1}}}}{{a + 1}}$. Students may forget to add the constant of integration after solving the integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

