
If $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$, then $f''\left( x \right) + f\left( x \right)$ is equal to:
A. $\cos x$
B. $4\cos x$
C. $\sin x$
D. $4\sin x$
Answer
506.1k+ views
Hint:In the given problem, we are required to find the value of the expressions involving the second order derivative of the given function. Since, $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$ involves a product term, so we will have to apply product rule of differentiation in the process of differentiating $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$ . Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly.
Complete step by step answer:
So, we have, $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$
Opening the brackets, we get,
$ \Rightarrow f\left( x \right) = 10\cos x + 13\sin x + 2x\sin x$
Differentiating both sides of the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {10\cos x + 13\sin x + 2x\sin x} \right]$
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {10\cos x} \right) + \dfrac{d}{{dx}}\left( {13\sin x} \right) + \dfrac{d}{{dx}}\left( {2x\sin x} \right)\]
Taking constant out of the differentiation, we get,
\[ \Rightarrow f'\left( x \right) = 10\dfrac{d}{{dx}}\left( {\cos x} \right) + 13\dfrac{d}{{dx}}\left( {\sin x} \right) + 2\dfrac{d}{{dx}}\left( {x\sin x} \right)\]
Now, we know the derivative of $\cos x$ is $ - \sin x$ and the derivative of $\sin x$ is $\cos x$. So, we get,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\dfrac{d}{{dx}}\left( {x\sin x} \right)\]
Using the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\left[ {x\dfrac{d}{{dx}}\left( {\sin x} \right) + \sin x\dfrac{{d\left( x \right)}}{{dx}}} \right]\]
Now, we know the derivative of $x$ with respect to x is $1$ and the derivative of $\sin x$ with respect to x is $\cos x$. So, we get,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\left[ {x\cos x + \sin x} \right]\]
Opening brackets, we get,
\[ \Rightarrow f'\left( x \right) = - 10\sin x + 13\cos x + 2x\cos x + 2\sin x\]
Simplifying the expression,
\[ \Rightarrow f'\left( x \right) = 13\cos x + 2x\cos x - 8\sin x\]
Now, differentiate the above equation again with respect to x to find the second derivative of the function.
\[ \Rightarrow f''\left( x \right) = \dfrac{{dy}}{{dx}}\left[ {13\cos x + 2x\cos x - 8\sin x} \right]\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {13\cos x} \right) + \dfrac{d}{{dx}}\left( {2x\cos x} \right) - \dfrac{d}{{dx}}\left( {8\sin x} \right)\]
Taking constant out of the differentiation, we get,
\[ \Rightarrow f''\left( x \right) = 13\dfrac{d}{{dx}}\left( {\cos x} \right) + 2\dfrac{d}{{dx}}\left( {x\cos x} \right) - 8\dfrac{d}{{dx}}\left( {\sin x} \right)\]
Now, we know the derivative of $\cos x$ is $ - \sin x$ and the derivative of $\sin x$ is $\cos x$. So, we get,
\[ \Rightarrow f''\left( x \right) = 13\left( { - \sin x} \right) + 2\dfrac{d}{{dx}}\left( {x\cos x} \right) - 8\cos x\]
Using the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x + 2\left[ {x\dfrac{d}{{dx}}\left( {\cos x} \right) + \cos x\dfrac{{d\left( x \right)}}{{dx}}} \right]\]
Substituting the known derivatives again,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x + 2\left[ {x\left( { - \sin x} \right) + \cos x\left( 1 \right)} \right]\]
Simplifying the expression, we get,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x - 2x\sin x + 2\cos x\]
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 6\cos x - 2x\sin x\]
Now, we substitute the value of function and its second derivative into the expression which has to be evaluated. So, we have,
$f''\left( x \right) + f\left( x \right) = - 13\sin x - 6\cos x - 2x\sin x + 10\cos x + 13\sin x + 2x\sin x$
Adding up the like terms and cancelling similar terms with opposite signs, we get,
$ \Rightarrow f''\left( x \right) + f\left( x \right) = - 6\cos x + 10\cos x$
$ \therefore f''\left( x \right) + f\left( x \right) = 4\cos x$
So, the value of the expression $f''\left( x \right) + f\left( x \right)$ for $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$ is $4\cos x$.
Hence, the correct answer is option B.
Note: One must know the product rule of differentiation in order to solve the problem. The derivatives of basic trigonometric and algebraic functions must be learned by heart in order to find derivatives of complex composite functions using product rule and chain rule of differentiation. We should also know the simplification rule to simplify the expressions and find the value of the entity.
Complete step by step answer:
So, we have, $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$
Opening the brackets, we get,
$ \Rightarrow f\left( x \right) = 10\cos x + 13\sin x + 2x\sin x$
Differentiating both sides of the equation, we get,
$ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {10\cos x + 13\sin x + 2x\sin x} \right]$
\[ \Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left( {10\cos x} \right) + \dfrac{d}{{dx}}\left( {13\sin x} \right) + \dfrac{d}{{dx}}\left( {2x\sin x} \right)\]
Taking constant out of the differentiation, we get,
\[ \Rightarrow f'\left( x \right) = 10\dfrac{d}{{dx}}\left( {\cos x} \right) + 13\dfrac{d}{{dx}}\left( {\sin x} \right) + 2\dfrac{d}{{dx}}\left( {x\sin x} \right)\]
Now, we know the derivative of $\cos x$ is $ - \sin x$ and the derivative of $\sin x$ is $\cos x$. So, we get,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\dfrac{d}{{dx}}\left( {x\sin x} \right)\]
Using the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\left[ {x\dfrac{d}{{dx}}\left( {\sin x} \right) + \sin x\dfrac{{d\left( x \right)}}{{dx}}} \right]\]
Now, we know the derivative of $x$ with respect to x is $1$ and the derivative of $\sin x$ with respect to x is $\cos x$. So, we get,
\[ \Rightarrow f'\left( x \right) = 10\left( { - \sin x} \right) + 13\left( {\cos x} \right) + 2\left[ {x\cos x + \sin x} \right]\]
Opening brackets, we get,
\[ \Rightarrow f'\left( x \right) = - 10\sin x + 13\cos x + 2x\cos x + 2\sin x\]
Simplifying the expression,
\[ \Rightarrow f'\left( x \right) = 13\cos x + 2x\cos x - 8\sin x\]
Now, differentiate the above equation again with respect to x to find the second derivative of the function.
\[ \Rightarrow f''\left( x \right) = \dfrac{{dy}}{{dx}}\left[ {13\cos x + 2x\cos x - 8\sin x} \right]\]
\[ \Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {13\cos x} \right) + \dfrac{d}{{dx}}\left( {2x\cos x} \right) - \dfrac{d}{{dx}}\left( {8\sin x} \right)\]
Taking constant out of the differentiation, we get,
\[ \Rightarrow f''\left( x \right) = 13\dfrac{d}{{dx}}\left( {\cos x} \right) + 2\dfrac{d}{{dx}}\left( {x\cos x} \right) - 8\dfrac{d}{{dx}}\left( {\sin x} \right)\]
Now, we know the derivative of $\cos x$ is $ - \sin x$ and the derivative of $\sin x$ is $\cos x$. So, we get,
\[ \Rightarrow f''\left( x \right) = 13\left( { - \sin x} \right) + 2\dfrac{d}{{dx}}\left( {x\cos x} \right) - 8\cos x\]
Using the product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right) + g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right)$,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x + 2\left[ {x\dfrac{d}{{dx}}\left( {\cos x} \right) + \cos x\dfrac{{d\left( x \right)}}{{dx}}} \right]\]
Substituting the known derivatives again,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x + 2\left[ {x\left( { - \sin x} \right) + \cos x\left( 1 \right)} \right]\]
Simplifying the expression, we get,
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 8\cos x - 2x\sin x + 2\cos x\]
\[ \Rightarrow f''\left( x \right) = - 13\sin x - 6\cos x - 2x\sin x\]
Now, we substitute the value of function and its second derivative into the expression which has to be evaluated. So, we have,
$f''\left( x \right) + f\left( x \right) = - 13\sin x - 6\cos x - 2x\sin x + 10\cos x + 13\sin x + 2x\sin x$
Adding up the like terms and cancelling similar terms with opposite signs, we get,
$ \Rightarrow f''\left( x \right) + f\left( x \right) = - 6\cos x + 10\cos x$
$ \therefore f''\left( x \right) + f\left( x \right) = 4\cos x$
So, the value of the expression $f''\left( x \right) + f\left( x \right)$ for $f\left( x \right) = 10\cos x + \left( {13 + 2x} \right)\sin x$ is $4\cos x$.
Hence, the correct answer is option B.
Note: One must know the product rule of differentiation in order to solve the problem. The derivatives of basic trigonometric and algebraic functions must be learned by heart in order to find derivatives of complex composite functions using product rule and chain rule of differentiation. We should also know the simplification rule to simplify the expressions and find the value of the entity.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

