
If f and g are differentiable functions the D*(fg) is equal to
[a] f D*g+ gD*f
[b] D*fD*g
[c] ${{f}^{2}}D*g+{{g}^{2}}D*f$
[d] $f{{\left( D*g \right)}^{2}}+g{{\left( D*f \right)}^{2}}$
Answer
608.1k+ views
Hint: Recall the definition of limit of a function f(x).
$D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$.
Using this definition of this list find the expression for D*(fg(x)).
Complete step by step answer -
We know that $D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Replace f(x) by h(x) = f(x)g(x), we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}$
Adding and subtracting f(x+h)g(x) in numerator, we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}$
Hence, we have
$\begin{align}
& D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
\end{align}$
Since f(x) and g(x) are differentiable functions, we have
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ exists and is equal to D*(f(x))
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x+h \right)-g\left( x \right)}{h}$ exists and is equal to D*(g(x))
Also since f(x) is differentiable, f(x) is continuous.
Hence, we have
$\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)$ exists and is equal to f(x).
Using the above results, we have
$D*\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)D*\left( g\left( x \right) \right)+g\left( x \right)D*\left( f\left( x \right) \right)$
Hence option [a] is correct.
Note: [1] Remember the above derived result.
It is known as product rule of differentiation and is usually written as
(uv)’ = uv’+v’u.
[2] Other than f’(x) and $\dfrac{d\left( f\left( x \right) \right)}{dx}$ we use $D$ to represent the derivative of a function.
[3] In the above solution we have used the property that if $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)\pm g\left( x \right) \right)$ and $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$, with the last one holding if $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$.
[4] In the above solution, we have used the property that differentiable functions are continuous.
This is true since if either LHL or RHL does not exist, then $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$, will not exist.
And if limit exists but is not equal to f(x), then we have $\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)-f\left( x \right)\ne 0$ and hence $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ does not exist.
[3] Differentiation of division of functions
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{vu'-uv'}{{{v}^{2}}}$
$D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$.
Using this definition of this list find the expression for D*(fg(x)).
Complete step by step answer -
We know that $D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Replace f(x) by h(x) = f(x)g(x), we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}$
Adding and subtracting f(x+h)g(x) in numerator, we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}$
Hence, we have
$\begin{align}
& D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
\end{align}$
Since f(x) and g(x) are differentiable functions, we have
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ exists and is equal to D*(f(x))
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x+h \right)-g\left( x \right)}{h}$ exists and is equal to D*(g(x))
Also since f(x) is differentiable, f(x) is continuous.
Hence, we have
$\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)$ exists and is equal to f(x).
Using the above results, we have
$D*\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)D*\left( g\left( x \right) \right)+g\left( x \right)D*\left( f\left( x \right) \right)$
Hence option [a] is correct.
Note: [1] Remember the above derived result.
It is known as product rule of differentiation and is usually written as
(uv)’ = uv’+v’u.
[2] Other than f’(x) and $\dfrac{d\left( f\left( x \right) \right)}{dx}$ we use $D$ to represent the derivative of a function.
[3] In the above solution we have used the property that if $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)\pm g\left( x \right) \right)$ and $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$, with the last one holding if $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$.
[4] In the above solution, we have used the property that differentiable functions are continuous.
This is true since if either LHL or RHL does not exist, then $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$, will not exist.
And if limit exists but is not equal to f(x), then we have $\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)-f\left( x \right)\ne 0$ and hence $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ does not exist.
[3] Differentiation of division of functions
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{vu'-uv'}{{{v}^{2}}}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

