
If f and g are differentiable functions the D*(fg) is equal to
[a] f D*g+ gD*f
[b] D*fD*g
[c] ${{f}^{2}}D*g+{{g}^{2}}D*f$
[d] $f{{\left( D*g \right)}^{2}}+g{{\left( D*f \right)}^{2}}$
Answer
591.3k+ views
Hint: Recall the definition of limit of a function f(x).
$D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$.
Using this definition of this list find the expression for D*(fg(x)).
Complete step by step answer -
We know that $D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Replace f(x) by h(x) = f(x)g(x), we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}$
Adding and subtracting f(x+h)g(x) in numerator, we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}$
Hence, we have
$\begin{align}
& D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
\end{align}$
Since f(x) and g(x) are differentiable functions, we have
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ exists and is equal to D*(f(x))
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x+h \right)-g\left( x \right)}{h}$ exists and is equal to D*(g(x))
Also since f(x) is differentiable, f(x) is continuous.
Hence, we have
$\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)$ exists and is equal to f(x).
Using the above results, we have
$D*\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)D*\left( g\left( x \right) \right)+g\left( x \right)D*\left( f\left( x \right) \right)$
Hence option [a] is correct.
Note: [1] Remember the above derived result.
It is known as product rule of differentiation and is usually written as
(uv)’ = uv’+v’u.
[2] Other than f’(x) and $\dfrac{d\left( f\left( x \right) \right)}{dx}$ we use $D$ to represent the derivative of a function.
[3] In the above solution we have used the property that if $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)\pm g\left( x \right) \right)$ and $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$, with the last one holding if $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$.
[4] In the above solution, we have used the property that differentiable functions are continuous.
This is true since if either LHL or RHL does not exist, then $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$, will not exist.
And if limit exists but is not equal to f(x), then we have $\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)-f\left( x \right)\ne 0$ and hence $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ does not exist.
[3] Differentiation of division of functions
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{vu'-uv'}{{{v}^{2}}}$
$D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$.
Using this definition of this list find the expression for D*(fg(x)).
Complete step by step answer -
We know that $D*f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Replace f(x) by h(x) = f(x)g(x), we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}$
Adding and subtracting f(x+h)g(x) in numerator, we get
$D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}$
Hence, we have
$\begin{align}
& D*\left( f\left( x \right)g\left( x \right) \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)}{h}+\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h} \\
\end{align}$
Since f(x) and g(x) are differentiable functions, we have
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ exists and is equal to D*(f(x))
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{g\left( x+h \right)-g\left( x \right)}{h}$ exists and is equal to D*(g(x))
Also since f(x) is differentiable, f(x) is continuous.
Hence, we have
$\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)$ exists and is equal to f(x).
Using the above results, we have
$D*\left( f\left( x \right)g\left( x \right) \right)=f\left( x \right)D*\left( g\left( x \right) \right)+g\left( x \right)D*\left( f\left( x \right) \right)$
Hence option [a] is correct.
Note: [1] Remember the above derived result.
It is known as product rule of differentiation and is usually written as
(uv)’ = uv’+v’u.
[2] Other than f’(x) and $\dfrac{d\left( f\left( x \right) \right)}{dx}$ we use $D$ to represent the derivative of a function.
[3] In the above solution we have used the property that if $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)\pm g\left( x \right) \right)$ and $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$, with the last one holding if $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$.
[4] In the above solution, we have used the property that differentiable functions are continuous.
This is true since if either LHL or RHL does not exist, then $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$, will not exist.
And if limit exists but is not equal to f(x), then we have $\underset{h\to 0}{\mathop{\lim }}\,f\left( x+h \right)-f\left( x \right)\ne 0$ and hence $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ does not exist.
[3] Differentiation of division of functions
${{\left( \dfrac{u}{v} \right)}^{'}}=\dfrac{vu'-uv'}{{{v}^{2}}}$
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

