
If energy, $E={{G}^{p}}{{h}^{q}}{{c}^{r}}$ where $G$ is the universal gravitational constant,$h$ is the Planck’s constant and $c$ is the velocity of light, then the values of $p,q$ and $r$ respectively:
A.$-\dfrac{1}{2},\dfrac{1}{2}and\dfrac{5}{2}$
B.$\dfrac{1}{2},-\dfrac{1}{2}and\dfrac{-5}{2}$
C.$\dfrac{-1}{2},\dfrac{1}{2}and\dfrac{3}{2}$
D.$\dfrac{1}{2},\dfrac{-1}{2}and\dfrac{-3}{2}$
Answer
572.7k+ views
HintWrite to both sides dimensions and compare both sides
dimension of $E=$ dimension of ${{G}^{p}}{{h}^{q}}{{c}^{r}}$
Where $G=$ Universal gravitational constant, $h=$ Plank’s constant and $c=$ Speed of light
Complete step-by-step solution: Dimension:- The dimension of a physical quantity are the power to which the fundamental units are raised in order to obtain the derived unit of that quantity.
To express the dimensions of physical quantities in mechanics, the length, mass and time are denoted by $\left[ L \right]$ $\left[ M \right]$ and $\left[ T \right]$ . The dimensions of physical quantities are$a$in length, $b$ in mass and $c$ in time, then the dimensions of that physical quantity shall be written in the following manner
$\left[ {{L}^{a}}{{M}^{b}}{{C}^{C}} \right]$ [dimension formula]
Given
$E={{G}^{p}}{{h}^{q}}{{c}^{r}}$ ……………(1)
$G=$ Gravitational constant
$h=$ Plank’s constant
$c=$ Speed of light
Dimension of $G=\left[ {{M}^{-1}}{{L}^{3}}T-2 \right]$
Dimension of $h=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
Dimension of $c=\left[ L{{T}^{-1}} \right]=\left[ {{M}^{0}}L{{T}^{-1}} \right]$
Dimension of $E=\left[ M{{L}^{2}}{{T}^{-2}} \right]$
Putt these values in equation (1)
$\left[ M{{L}^{2}}{{T}^{-2}} \right]={{\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{-2}} \right]}^{p}}{{\left[ M{{L}^{2}}{{T}^{-1}} \right]}^{q}}{{\left[ {{M}^{0}}L{{T}^{-1}} \right]}^{r}}$
$\left[ M{{L}^{2}}{{T}^{-2}} \right]=\left[ {{M}^{-p+q+0}}{{L}^{3p+2q+r}}{{T}^{-2p-q-r}} \right]$
Comparing the power of $M$ both sides
$1=-p+q$
$-p+q=1$ ………………….(2)
Comparing the power of $L$ both sides
$2=3p+2q+r$
$3p+2q+r=2$ ………………..(3)
Comparing the power of $T$ both sides
$\begin{align}
& -2=-2p-q-r \\
& -\left( 2p+q+r \right)=-2 \\
\end{align}$
$2p+q+r=2$ …………….(4)
Equation (3) substract from equation (4)
$\begin{align}
& 2p+q+r-3p-2q-r=2-2 \\
& -p-q=0 \\
\end{align}$
$p=-q$…………..(5)
Put the value of $p$ in equation (1)
$\begin{align}
& -p+q=1 \\
& -\left( -q \right)+q=1 \\
& q+q=1 \\
& 2q=1 \\
& q=\dfrac{1}{2} \\
\end{align}$
From equation (5)
$\begin{align}
& p=-q \\
& p=-\dfrac{1}{2} \\
\end{align}$
Value of $p$ and $q$ put in equation (3)
$\begin{align}
& 3\times \left( -\dfrac{1}{2} \right)+2\times \dfrac{1}{2}+r=2 \\
& -\dfrac{3}{2}+1+r=2 \\
& -\dfrac{1}{2}+r=2 \\
& r=2+\dfrac{1}{2} \\
& r=\dfrac{3}{2} \\
\end{align}$
Putting the value of $p,q$ and $r$ in equation (1)
$E={{G}^{-1}}{{h}^{\dfrac{1}{2}}}{{c}^{\dfrac{3}{2}}}$
Note:Student thought that $G$ is a universal constant, so it has no dimension, but it has the dimension$\left[ {{M}^{-1}}{{L}^{3}}{{T}^{-2}} \right]$
dimension of $E=$ dimension of ${{G}^{p}}{{h}^{q}}{{c}^{r}}$
Where $G=$ Universal gravitational constant, $h=$ Plank’s constant and $c=$ Speed of light
Complete step-by-step solution: Dimension:- The dimension of a physical quantity are the power to which the fundamental units are raised in order to obtain the derived unit of that quantity.
To express the dimensions of physical quantities in mechanics, the length, mass and time are denoted by $\left[ L \right]$ $\left[ M \right]$ and $\left[ T \right]$ . The dimensions of physical quantities are$a$in length, $b$ in mass and $c$ in time, then the dimensions of that physical quantity shall be written in the following manner
$\left[ {{L}^{a}}{{M}^{b}}{{C}^{C}} \right]$ [dimension formula]
Given
$E={{G}^{p}}{{h}^{q}}{{c}^{r}}$ ……………(1)
$G=$ Gravitational constant
$h=$ Plank’s constant
$c=$ Speed of light
Dimension of $G=\left[ {{M}^{-1}}{{L}^{3}}T-2 \right]$
Dimension of $h=\left[ M{{L}^{2}}{{T}^{-1}} \right]$
Dimension of $c=\left[ L{{T}^{-1}} \right]=\left[ {{M}^{0}}L{{T}^{-1}} \right]$
Dimension of $E=\left[ M{{L}^{2}}{{T}^{-2}} \right]$
Putt these values in equation (1)
$\left[ M{{L}^{2}}{{T}^{-2}} \right]={{\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{-2}} \right]}^{p}}{{\left[ M{{L}^{2}}{{T}^{-1}} \right]}^{q}}{{\left[ {{M}^{0}}L{{T}^{-1}} \right]}^{r}}$
$\left[ M{{L}^{2}}{{T}^{-2}} \right]=\left[ {{M}^{-p+q+0}}{{L}^{3p+2q+r}}{{T}^{-2p-q-r}} \right]$
Comparing the power of $M$ both sides
$1=-p+q$
$-p+q=1$ ………………….(2)
Comparing the power of $L$ both sides
$2=3p+2q+r$
$3p+2q+r=2$ ………………..(3)
Comparing the power of $T$ both sides
$\begin{align}
& -2=-2p-q-r \\
& -\left( 2p+q+r \right)=-2 \\
\end{align}$
$2p+q+r=2$ …………….(4)
Equation (3) substract from equation (4)
$\begin{align}
& 2p+q+r-3p-2q-r=2-2 \\
& -p-q=0 \\
\end{align}$
$p=-q$…………..(5)
Put the value of $p$ in equation (1)
$\begin{align}
& -p+q=1 \\
& -\left( -q \right)+q=1 \\
& q+q=1 \\
& 2q=1 \\
& q=\dfrac{1}{2} \\
\end{align}$
From equation (5)
$\begin{align}
& p=-q \\
& p=-\dfrac{1}{2} \\
\end{align}$
Value of $p$ and $q$ put in equation (3)
$\begin{align}
& 3\times \left( -\dfrac{1}{2} \right)+2\times \dfrac{1}{2}+r=2 \\
& -\dfrac{3}{2}+1+r=2 \\
& -\dfrac{1}{2}+r=2 \\
& r=2+\dfrac{1}{2} \\
& r=\dfrac{3}{2} \\
\end{align}$
Putting the value of $p,q$ and $r$ in equation (1)
$E={{G}^{-1}}{{h}^{\dfrac{1}{2}}}{{c}^{\dfrac{3}{2}}}$
Note:Student thought that $G$ is a universal constant, so it has no dimension, but it has the dimension$\left[ {{M}^{-1}}{{L}^{3}}{{T}^{-2}} \right]$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

