
If electron charge e, electron mass m, speed of light in vacuum c and Planck's constant h are taken as fundamental constant h are taken as fundamental quantities, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of
A. $(\dfrac {m{c}^{2}}{h{e}^{2}})$
B. $(\dfrac {h}{m{e}^{2}})$
C. $(\dfrac {hc}{m{e}^{2}})$
D. $(\dfrac {h}{c{e}^{2}})$
Answer
564.3k+ views
Hint: To solve this problem, first write the dimensions of permeability of vacuum in terms of other fundamental quantities i.e. e, c, h and m. Substitute the dimensions of all the above mentioned fundamental quantities. Consider exponents of these fundamental quantities to be a, b, c and d. Now, compare the powers on both the sides and find the value of a, b, c and d. Substitute these values back in the first equation. Then, write the dimensions in equation form. This will give the permeability of vacuum in terms of mentioned fundamental quantities.
Complete step by step answer:
The dimensions of permeability of vacuum in terms of other fundamental quantities can be written as,
$[{\mu}_{0}]= [{e}^{a}{c}^{b}{h}^{c}{m}^{d}]$ ...(1)
Dimensions of ${\mu}_{0}$ are $[ML{T}^{-2}{A}^{-2}]$.
Dimensions of e are $[AT]$.
Dimensions of c are $[L{T}^{-1}]$.
Dimensions of h are $[M{L}^{2}{T}^{-1}]$.
Dimensions of m are $[M]$.
Substituting all the values in the equation. (1) we get,
$[ML{T}^{-2}{A}^{-2}]= {[AT]}^{a} {[L{T}^{-1}]}^{b}{ [M{L}^{2}{T}^{-1}]}^{c} {[M]}^{d}$
$[ML{T}^{-2}{A}^{-2}]=[{A}^{a}{L}^{b+ 2c}{T}^{a-b-c}{M}^{c+d}]$
Equating the powers on both the sides we get,
$c+d=1$ ...(2)
$b+2c=1$ ...(3)
$a-b-c=-2$ ...(4)
$a=-2$ ...(5)
Substituting value of a in equation. (4) we get,
$b+c= 0$ ...(6)
Subtracting equation. (6) and (3) we get,
$c=1$
Substituting value of a and c in equation. (4) we get,
$b=-1$
Now, substituting the value of c in the equation. (2) we get,
$d=0$
Substituting these values in the equation. (1) we get,
$[{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}{m}^{0}]$
$\Rightarrow [{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}]$
$\Rightarrow {\mu}_{0}= \dfrac {h}{c{e}^{2}}$
Hence, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of $(\dfrac {h}{c{e}^{2}})$.
So, the correct answer is “Option D”.
Note: To solve these types of questions, students must know the dimensions of questions or the units of each quantity. Dimensions of a quantity are basically based on the unit of the quantity. So, if students know the unit of a quantity they can derive the dimension of that respective physical or fundamental quantity.
Complete step by step answer:
The dimensions of permeability of vacuum in terms of other fundamental quantities can be written as,
$[{\mu}_{0}]= [{e}^{a}{c}^{b}{h}^{c}{m}^{d}]$ ...(1)
Dimensions of ${\mu}_{0}$ are $[ML{T}^{-2}{A}^{-2}]$.
Dimensions of e are $[AT]$.
Dimensions of c are $[L{T}^{-1}]$.
Dimensions of h are $[M{L}^{2}{T}^{-1}]$.
Dimensions of m are $[M]$.
Substituting all the values in the equation. (1) we get,
$[ML{T}^{-2}{A}^{-2}]= {[AT]}^{a} {[L{T}^{-1}]}^{b}{ [M{L}^{2}{T}^{-1}]}^{c} {[M]}^{d}$
$[ML{T}^{-2}{A}^{-2}]=[{A}^{a}{L}^{b+ 2c}{T}^{a-b-c}{M}^{c+d}]$
Equating the powers on both the sides we get,
$c+d=1$ ...(2)
$b+2c=1$ ...(3)
$a-b-c=-2$ ...(4)
$a=-2$ ...(5)
Substituting value of a in equation. (4) we get,
$b+c= 0$ ...(6)
Subtracting equation. (6) and (3) we get,
$c=1$
Substituting value of a and c in equation. (4) we get,
$b=-1$
Now, substituting the value of c in the equation. (2) we get,
$d=0$
Substituting these values in the equation. (1) we get,
$[{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}{m}^{0}]$
$\Rightarrow [{\mu}_{0}]= [{e}^{-2}{c}^{-1}{h}^{1}]$
$\Rightarrow {\mu}_{0}= \dfrac {h}{c{e}^{2}}$
Hence, the permeability of vacuum ${\mu}_{0}$ can be expressed in units of $(\dfrac {h}{c{e}^{2}})$.
So, the correct answer is “Option D”.
Note: To solve these types of questions, students must know the dimensions of questions or the units of each quantity. Dimensions of a quantity are basically based on the unit of the quantity. So, if students know the unit of a quantity they can derive the dimension of that respective physical or fundamental quantity.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

