
If $ \text{E}{{+}_{\text{F}{{\text{e}}^{2}}/\text{Fe}}} $ is $ {{\text{x}}_{1}} $ $ \text{E}{{+}_{\text{F}{{\text{e}}^{3}}/\text{Fe}}} $ is $ {{\text{x}}^{2}} $ then what will be $ {{\text{E}}^{+}}_{\text{Fe}/\text{F}{{\text{e}}^{2+}}} $ ?
Answer
552.3k+ views
Hint: $ {{\text{E}}^{+}} $ denotes the electrode potential of a cell. And energy produced in a cell is called the Gibbs free energy. Gibbs free energy is given by expression
$ -\Delta \text{G}= $ nEF
Electrical energy produced in a cell. When $ \Delta \text{G} $ denotes Gibbs free energy
Where $ \Delta \text{G} $ denotes Gibbs free energy
nf= Number of n faraday's electricity generated by cell.
E=6MF of cell.
Complete step by step solution
The EMF of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}}={{\text{x}}_{1}} $
The EMF of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}}={{\text{x}}_{2}} $
We have to find $ {{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}} $ =?
Let $ {{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}}=\text{z} $
The half reaction of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}} $ is given by
$ \text{F}{{\text{e}}^{2+}}+\text{2}{{\text{e}}^{-}}\to \text{Fe} $
Gibbs free energy of cell $ =-\text{nEF} $
$ \Delta {{\text{G}}^{+}}=-2\text{F}{{\text{x}}_{1}} $ …… (1)
The half reaction of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}} $ is given by
$ \text{F}{{\text{e}}^{3+}}+\text{3}{{\text{e}}^{-}}\to \text{F}e $
$ \Delta {{\text{G}}^{+}}=-3\text{F}{{\text{x}}_{2}} $ ……. (2)
The half reaction for $ {{\text{E}}_{\text{Fe}+/\text{F}{{\text{e}}^{3+}}}} $ A
$ \text{F}{{\text{e}}^{+}}-{{\text{e}}^{-}}\to \text{F}{{\text{e}}^{2+}} $
$ \Delta {{\text{G}}^{+}}=-\left( \text{nFz} \right) $
$ =-\text{Fz} $ ….. (3)
Adding equation (1) & (2) and comparing with (3)
$ =-\text{Fz}=-2\text{F}{{\text{x}}_{1}}+\left( -\text{3}{{\text{x}}_{1}} \right) $
$ =-\text{Fz}=-\text{F}\left[ 2{{\text{x}}_{1}}+3{{\text{x}}_{2}} \right] $
$ \text{z}=2{{\text{x}}_{4}}+3{{\text{x}}_{2}} $
$ \therefore {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{+}}/\text{F}{{\text{e}}^{2}}^{+}}=2{{\text{x}}_{1}}+3{{\text{x}}_{2}} $ .
Note
To solve this equation the expression for the Gibbs free energy must be remember, i.e. $ \Delta \text{G}=-\text{nEF} $ where (F) Faraday's constant and the value of faraday’s is equal to $ 96485\text{ C mo}{{\text{l}}^{-1}} $ .
This constant represents the magnitude of electric charge per mole of electrons. Gibbs free energy is associated with a chemical reaction that can be used to do work. It is a Thermodynamic quantity. Negative sign in Gibbs free energy tells us that reactant has more free energy than product.
$ -\Delta \text{G}= $ nEF
Electrical energy produced in a cell. When $ \Delta \text{G} $ denotes Gibbs free energy
Where $ \Delta \text{G} $ denotes Gibbs free energy
nf= Number of n faraday's electricity generated by cell.
E=6MF of cell.
Complete step by step solution
The EMF of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}}={{\text{x}}_{1}} $
The EMF of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}}={{\text{x}}_{2}} $
We have to find $ {{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}} $ =?
Let $ {{\text{E}}^{+}}_{\text{F}+/\text{F}{{\text{e}}^{3+}}}=\text{z} $
The half reaction of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{2+}}/\text{Fe}} $ is given by
$ \text{F}{{\text{e}}^{2+}}+\text{2}{{\text{e}}^{-}}\to \text{Fe} $
Gibbs free energy of cell $ =-\text{nEF} $
$ \Delta {{\text{G}}^{+}}=-2\text{F}{{\text{x}}_{1}} $ …… (1)
The half reaction of $ {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{3+}}/\text{Fe}} $ is given by
$ \text{F}{{\text{e}}^{3+}}+\text{3}{{\text{e}}^{-}}\to \text{F}e $
$ \Delta {{\text{G}}^{+}}=-3\text{F}{{\text{x}}_{2}} $ ……. (2)
The half reaction for $ {{\text{E}}_{\text{Fe}+/\text{F}{{\text{e}}^{3+}}}} $ A
$ \text{F}{{\text{e}}^{+}}-{{\text{e}}^{-}}\to \text{F}{{\text{e}}^{2+}} $
$ \Delta {{\text{G}}^{+}}=-\left( \text{nFz} \right) $
$ =-\text{Fz} $ ….. (3)
Adding equation (1) & (2) and comparing with (3)
$ =-\text{Fz}=-2\text{F}{{\text{x}}_{1}}+\left( -\text{3}{{\text{x}}_{1}} \right) $
$ =-\text{Fz}=-\text{F}\left[ 2{{\text{x}}_{1}}+3{{\text{x}}_{2}} \right] $
$ \text{z}=2{{\text{x}}_{4}}+3{{\text{x}}_{2}} $
$ \therefore {{\text{E}}^{+}}_{\text{F}{{\text{e}}^{+}}/\text{F}{{\text{e}}^{2}}^{+}}=2{{\text{x}}_{1}}+3{{\text{x}}_{2}} $ .
Note
To solve this equation the expression for the Gibbs free energy must be remember, i.e. $ \Delta \text{G}=-\text{nEF} $ where (F) Faraday's constant and the value of faraday’s is equal to $ 96485\text{ C mo}{{\text{l}}^{-1}} $ .
This constant represents the magnitude of electric charge per mole of electrons. Gibbs free energy is associated with a chemical reaction that can be used to do work. It is a Thermodynamic quantity. Negative sign in Gibbs free energy tells us that reactant has more free energy than product.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

