
If \[\dfrac{{}^{n}{{C}_{0}}}{{{2}^{n}}}+2.\dfrac{{}^{n}{{C}_{1}}}{{{2}^{n}}}+3.\dfrac{{}^{n}{{C}_{2}}}{{{2}^{n}}}+......+\left( n+1 \right)\dfrac{{}^{n}{{C}_{n}}}{{{n}^{n}}}=16\], then the value of ‘n’ is: -
(a) 20
(b) 25
(c) 30
(d) 40
Answer
580.2k+ views
Hint: Take \[{{2}^{n}}\] common from all term. Inside the bracket, write, \[{}^{n}{{C}_{0}}+2.{}^{n}{{C}_{1}}+3.{}^{n}{{C}_{2}}+....+\left( n+1 \right){}^{n}{{C}_{n}}\] in the form \[{}^{n}{{C}_{0}}+\left( 1+1 \right).{}^{n}{{C}_{1}}+\left( 1+2 \right).{}^{n}{{C}_{2}}+....+\left( 1+n \right){}^{n}{{C}_{n}}\]. Multiply all the terms and group \[\left( {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+....+{}^{n}{{C}_{n}} \right)\] together whose value is \[{{2}^{n}}\]. Now, the terms left will be \[\left( {}^{n}{{C}_{0}}+2.{}^{n}{{C}_{1}}+3.{}^{n}{{C}_{2}}+....+n.{}^{n}{{C}_{n}} \right)\] whose value we have to find. Assume this expression as S. Again write S by adding the terms together. From here find the value of S and put in the expression to solve for the value of n.
Complete step by step answer:
We have been given: - \[\dfrac{{}^{n}{{C}_{0}}}{{{2}^{n}}}+2.\dfrac{{}^{n}{{C}_{1}}}{{{2}^{n}}}+3.\dfrac{{}^{n}{{C}_{2}}}{{{2}^{n}}}+......+\left( n+1 \right)\dfrac{{}^{n}{{C}_{n}}}{{{n}^{n}}}=16\].
This can be written as: -
\[\begin{align}
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {}^{n}{{C}_{0}}+\left( 1+1 \right){}^{n}{{C}_{1}}+\left( 1+2 \right){}^{n}{{C}_{2}}+....+\left( 1+n \right){}^{n}{{C}_{n}} \right]=16 \\
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ \left( {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{n}} \right) + \left( 1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}} \right) \right]=16 \\
\end{align}\]
We know that, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+.....+{}^{n}{{C}_{n}}={{2}^{n}}\], therefore,
\[\Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {{2}^{n}}+1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}} \right]=16\]
Let us assume: -
\[\Rightarrow S=1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}}\]
\[\Rightarrow S=0.{}^{n}{{C}_{0}}+1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}}\] - (i)
This can also be written as: -
\[\Rightarrow S=n.{}^{n}{{C}_{n}}+\left( n-1 \right).{}^{n}{{C}_{n-1}}+........+1.{}^{n}{{C}_{1}}+0.{}^{n}{{C}_{0}}\] - (ii)
Now, adding equation (i) and (ii), we get,
\[\Rightarrow 2S=\left( 0.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{n}} \right)+\left( 1.{}^{n}{{C}_{1}}+\left( n-1 \right).{}^{n}{{C}_{n-1}} \right)+\left( 2.{}^{n}{{C}_{2}}+\left( n-2 \right).{}^{n}{{C}_{n-2}} \right)+.....+\left( n.{}^{n}{{C}_{n}}+0.{}^{n}{{C}_{0}} \right)\]
Using the equality, \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\], we get,
\[\begin{align}
& \Rightarrow 2S=\left( 0.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{n}} \right)+\left( 1.{}^{n}{{C}_{1}}+\left( n-1 \right).{}^{n}{{C}_{1}} \right)+\left( 2.{}^{n}{{C}_{2}}+\left( n-2 \right).{}^{n}{{C}_{2}} \right)+.....+\left( n.{}^{n}{{C}_{n}}+0.{}^{n}{{C}_{0}} \right) \\
& \Rightarrow 2S=n.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{1}}+n.{}^{n}{{C}_{2}}+......+n.{}^{n}{{C}_{n}} \\
& \Rightarrow 2S=n\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+......+{}^{n}{{C}_{n}} \right] \\
& \Rightarrow 2S=n{{.2}^{n}} \\
& \Rightarrow S=n{{.2}^{n-1}} \\
\end{align}\]
Substituting the value of S in the required expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {{2}^{n}}+n{{.2}^{n-1}} \right]=16 \\
& \Rightarrow 1+\dfrac{n}{2}=16 \\
& \Rightarrow \dfrac{n}{2}=15 \\
& \Rightarrow n=30 \\
\end{align}\]
So, the correct answer is “Option C”.
Note: One may note that we can also remember the result of ‘S’, that will help us to solve these types of questions easily and in less time. You may see that we have added \[0.{}^{n}{{C}_{0}}\] in the expression of S, this is because we have to group the terms so that a pattern can be formed. The term \[0.{}^{n}{{C}_{0}}\] has the value 0 and therefore it does not affect the value of S.
Complete step by step answer:
We have been given: - \[\dfrac{{}^{n}{{C}_{0}}}{{{2}^{n}}}+2.\dfrac{{}^{n}{{C}_{1}}}{{{2}^{n}}}+3.\dfrac{{}^{n}{{C}_{2}}}{{{2}^{n}}}+......+\left( n+1 \right)\dfrac{{}^{n}{{C}_{n}}}{{{n}^{n}}}=16\].
This can be written as: -
\[\begin{align}
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {}^{n}{{C}_{0}}+\left( 1+1 \right){}^{n}{{C}_{1}}+\left( 1+2 \right){}^{n}{{C}_{2}}+....+\left( 1+n \right){}^{n}{{C}_{n}} \right]=16 \\
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ \left( {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{n}} \right) + \left( 1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}} \right) \right]=16 \\
\end{align}\]
We know that, \[{}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+.....+{}^{n}{{C}_{n}}={{2}^{n}}\], therefore,
\[\Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {{2}^{n}}+1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}} \right]=16\]
Let us assume: -
\[\Rightarrow S=1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}}\]
\[\Rightarrow S=0.{}^{n}{{C}_{0}}+1.{}^{n}{{C}_{1}}+2.{}^{n}{{C}_{2}}+.....+n.{}^{n}{{C}_{n}}\] - (i)
This can also be written as: -
\[\Rightarrow S=n.{}^{n}{{C}_{n}}+\left( n-1 \right).{}^{n}{{C}_{n-1}}+........+1.{}^{n}{{C}_{1}}+0.{}^{n}{{C}_{0}}\] - (ii)
Now, adding equation (i) and (ii), we get,
\[\Rightarrow 2S=\left( 0.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{n}} \right)+\left( 1.{}^{n}{{C}_{1}}+\left( n-1 \right).{}^{n}{{C}_{n-1}} \right)+\left( 2.{}^{n}{{C}_{2}}+\left( n-2 \right).{}^{n}{{C}_{n-2}} \right)+.....+\left( n.{}^{n}{{C}_{n}}+0.{}^{n}{{C}_{0}} \right)\]
Using the equality, \[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\], we get,
\[\begin{align}
& \Rightarrow 2S=\left( 0.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{n}} \right)+\left( 1.{}^{n}{{C}_{1}}+\left( n-1 \right).{}^{n}{{C}_{1}} \right)+\left( 2.{}^{n}{{C}_{2}}+\left( n-2 \right).{}^{n}{{C}_{2}} \right)+.....+\left( n.{}^{n}{{C}_{n}}+0.{}^{n}{{C}_{0}} \right) \\
& \Rightarrow 2S=n.{}^{n}{{C}_{0}}+n.{}^{n}{{C}_{1}}+n.{}^{n}{{C}_{2}}+......+n.{}^{n}{{C}_{n}} \\
& \Rightarrow 2S=n\left[ {}^{n}{{C}_{0}}+{}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+......+{}^{n}{{C}_{n}} \right] \\
& \Rightarrow 2S=n{{.2}^{n}} \\
& \Rightarrow S=n{{.2}^{n-1}} \\
\end{align}\]
Substituting the value of S in the required expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{{{2}^{n}}}\left[ {{2}^{n}}+n{{.2}^{n-1}} \right]=16 \\
& \Rightarrow 1+\dfrac{n}{2}=16 \\
& \Rightarrow \dfrac{n}{2}=15 \\
& \Rightarrow n=30 \\
\end{align}\]
So, the correct answer is “Option C”.
Note: One may note that we can also remember the result of ‘S’, that will help us to solve these types of questions easily and in less time. You may see that we have added \[0.{}^{n}{{C}_{0}}\] in the expression of S, this is because we have to group the terms so that a pattern can be formed. The term \[0.{}^{n}{{C}_{0}}\] has the value 0 and therefore it does not affect the value of S.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

