
If $\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}}$ where $y\left( 0 \right) = 0$then $y$ is expressed explicitly as
(A) $0.5{\log _e}\left( {1 + {x^2}} \right)$
(B) ${\log _e}\left( {1 + {x^2}} \right)$
(C) ${\log _e}\left( {x + \sqrt {1 + {x^2}} } \right)$
(D) ${\log _e}\left( {x + \sqrt {1 - {x^2}} } \right)$
Answer
577.8k+ views
Hint: First of all identify the type of differential equation. Here the given differential equation is in the form of $\dfrac{{dx}}{{dy}} + Px = Q$, so it is linear differential equation of first order whose solution can be find in several steps:
(i) Convert the given differential equation in the form of $\dfrac{{dx}}{{dy}} + Px = Q$ to find out the values of $P$ and $Q$.
(ii) Now find integrating factor (I.F.) by the formula; $I.F. = {e^{\int {Pdy} }}$.
(iii) Now multiplying the both sides of equation obtained in step 1 by I.F., so that the LHS becomes the derivative of some function of $x$ and $y$.
(iv) Now integrate the both sides of equation obtained in step 3 with respect to $y$ and then find the value of $C$.
Complete step-by-step answer:
Given, $\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {{e^y} - x} \right)}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \left( {{e^y} - x} \right)$
$ \Rightarrow \dfrac{{dx}}{{dy}} + x = {e^y}$ …. (1)
It is of the form of first order differential equation, i.e., $\dfrac{{dx}}{{dy}} + Px = Q$, where $P = 1,Q = {e^y}$.
The solution of a linear differential equation can be find by following steps:
Step 1: First of all, find the Integrating Factor (I.F.), which is given by,
$I.F. = {e^{\int {Pdy} }}$
Put $P = 1$,
$I.F. = {e^{\int {1 \cdot dy} }}$
$I.F. = {e^y}$
Step 2: Now multiplying the both sides of equation (1) by I.F., so that the LHS becomes the derivative of some function of $x$ and $y$.
${e^y}\dfrac{{dx}}{{dy}} + {e^y}x = {e^y}{e^y}$
$ \Rightarrow {e^y}\dfrac{{dx}}{{dy}} + x{e^y} = {e^{2y}}$ ….. (2)
Now, using product rule of derivative, i.e., $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]$ to find $\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right)$.
$\therefore $$\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y}$
Now, equation (2) becomes
$ \Rightarrow \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^{2y}}$ [Put ${e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y} = \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right)$]
Step 3: Now integrating both sides of equation (3) with respect to $y$, we get
${e^y} \cdot x = \int {{e^{2y}}} + C$, where $C$ is the constant of integration.
$ \Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} + C$ …. (3)
We have, $y\left( 0 \right) = 0$. Therefore, put $x = 0$ and $y = 0$ in equation (3) to find out the value of $C$.
$\therefore {e^0} \cdot 0 = \dfrac{{{e^{2\left( 0 \right)}}}}{2} + C$
$ \Rightarrow 0 = \dfrac{1}{2} + C$
$ \Rightarrow C = \dfrac{{ - 1}}{2}$
Put the value of $C$ in equation (3),
$\therefore {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} - \dfrac{1}{2}$
$ \Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}} - 1}}{2}$
$ \Rightarrow 2{e^y} \cdot x = {e^{2y}} - 1$
$ \Rightarrow {e^{2y}} - 2x{e^y} - 1 = 0$
Step 4: Now find the value of $y$ by substituting ${e^y} = t$,
$\therefore {t^2} - 2xt - 1 = 0$
Now find the value of $t$ by using the quadratic formula, i.e.,
$t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$\therefore t = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ \Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} + 4} }}{2}$
\[ \Rightarrow t = \dfrac{{2x \pm \sqrt {4\left( {{x^2} + 1} \right)} }}{2}\]
\[ \Rightarrow t = \dfrac{{2x \pm 2\sqrt {\left( {{x^2} + 1} \right)} }}{2}\]
\[ \Rightarrow t = \dfrac{{2\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]}}{2}\]
\[ \Rightarrow t = x \pm \sqrt {\left( {{x^2} + 1} \right)} \]
\[\therefore {e^y} = x \pm \sqrt {\left( {{x^2} + 1} \right)} \] $\left( {\because {e^y} = t} \right)$
\[ \Rightarrow y = {\log _e}\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]\]
Log value cannot be so we have to take positive value
$\Rightarrow y = $${\log _e}\left( {x + \sqrt {1 + {x^2}} } \right)$
Hence, option (C) is the correct answer.
Note: Linear differential equation of first order is of two types: one is the form of $\dfrac{{dx}}{{dy}} + Px = Q$ and second is the form of $\dfrac{{dy}}{{dx}} + Py = Q$. It may be noted that integrating factors for the above two equations are different. For $\dfrac{{dx}}{{dy}} + Px = Q$; $I.F. = {e^{\int {Pdy} }}$ and for $\dfrac{{dy}}{{dx}} + Py = Q$; $I.F. = {e^{\int {Pdx} }}$.
(i) Convert the given differential equation in the form of $\dfrac{{dx}}{{dy}} + Px = Q$ to find out the values of $P$ and $Q$.
(ii) Now find integrating factor (I.F.) by the formula; $I.F. = {e^{\int {Pdy} }}$.
(iii) Now multiplying the both sides of equation obtained in step 1 by I.F., so that the LHS becomes the derivative of some function of $x$ and $y$.
(iv) Now integrate the both sides of equation obtained in step 3 with respect to $y$ and then find the value of $C$.
Complete step-by-step answer:
Given, $\dfrac{{dy}}{{dx}} = {\left( {{e^y} - x} \right)^{ - 1}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\left( {{e^y} - x} \right)}}$
$ \Rightarrow \dfrac{{dx}}{{dy}} = \left( {{e^y} - x} \right)$
$ \Rightarrow \dfrac{{dx}}{{dy}} + x = {e^y}$ …. (1)
It is of the form of first order differential equation, i.e., $\dfrac{{dx}}{{dy}} + Px = Q$, where $P = 1,Q = {e^y}$.
The solution of a linear differential equation can be find by following steps:
Step 1: First of all, find the Integrating Factor (I.F.), which is given by,
$I.F. = {e^{\int {Pdy} }}$
Put $P = 1$,
$I.F. = {e^{\int {1 \cdot dy} }}$
$I.F. = {e^y}$
Step 2: Now multiplying the both sides of equation (1) by I.F., so that the LHS becomes the derivative of some function of $x$ and $y$.
${e^y}\dfrac{{dx}}{{dy}} + {e^y}x = {e^y}{e^y}$
$ \Rightarrow {e^y}\dfrac{{dx}}{{dy}} + x{e^y} = {e^{2y}}$ ….. (2)
Now, using product rule of derivative, i.e., $\dfrac{d}{{dx}}\left[ {f\left( x \right) \cdot g\left( x \right)} \right] = f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] + g\left( x \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]$ to find $\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right)$.
$\therefore $$\dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y}$
Now, equation (2) becomes
$ \Rightarrow \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right) = {e^{2y}}$ [Put ${e^y} \cdot \dfrac{{dx}}{{dy}} + x{e^y} = \dfrac{d}{{dy}}\left( {{e^y} \cdot x} \right)$]
Step 3: Now integrating both sides of equation (3) with respect to $y$, we get
${e^y} \cdot x = \int {{e^{2y}}} + C$, where $C$ is the constant of integration.
$ \Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} + C$ …. (3)
We have, $y\left( 0 \right) = 0$. Therefore, put $x = 0$ and $y = 0$ in equation (3) to find out the value of $C$.
$\therefore {e^0} \cdot 0 = \dfrac{{{e^{2\left( 0 \right)}}}}{2} + C$
$ \Rightarrow 0 = \dfrac{1}{2} + C$
$ \Rightarrow C = \dfrac{{ - 1}}{2}$
Put the value of $C$ in equation (3),
$\therefore {e^y} \cdot x = \dfrac{{{e^{2y}}}}{2} - \dfrac{1}{2}$
$ \Rightarrow {e^y} \cdot x = \dfrac{{{e^{2y}} - 1}}{2}$
$ \Rightarrow 2{e^y} \cdot x = {e^{2y}} - 1$
$ \Rightarrow {e^{2y}} - 2x{e^y} - 1 = 0$
Step 4: Now find the value of $y$ by substituting ${e^y} = t$,
$\therefore {t^2} - 2xt - 1 = 0$
Now find the value of $t$ by using the quadratic formula, i.e.,
$t = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
$\therefore t = \dfrac{{ - \left( { - 2x} \right) \pm \sqrt {{{\left( { - 2x} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ \Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} + 4} }}{2}$
\[ \Rightarrow t = \dfrac{{2x \pm \sqrt {4\left( {{x^2} + 1} \right)} }}{2}\]
\[ \Rightarrow t = \dfrac{{2x \pm 2\sqrt {\left( {{x^2} + 1} \right)} }}{2}\]
\[ \Rightarrow t = \dfrac{{2\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]}}{2}\]
\[ \Rightarrow t = x \pm \sqrt {\left( {{x^2} + 1} \right)} \]
\[\therefore {e^y} = x \pm \sqrt {\left( {{x^2} + 1} \right)} \] $\left( {\because {e^y} = t} \right)$
\[ \Rightarrow y = {\log _e}\left[ {x \pm \sqrt {\left( {{x^2} + 1} \right)} } \right]\]
Log value cannot be so we have to take positive value
$\Rightarrow y = $${\log _e}\left( {x + \sqrt {1 + {x^2}} } \right)$
Hence, option (C) is the correct answer.
Note: Linear differential equation of first order is of two types: one is the form of $\dfrac{{dx}}{{dy}} + Px = Q$ and second is the form of $\dfrac{{dy}}{{dx}} + Py = Q$. It may be noted that integrating factors for the above two equations are different. For $\dfrac{{dx}}{{dy}} + Px = Q$; $I.F. = {e^{\int {Pdy} }}$ and for $\dfrac{{dy}}{{dx}} + Py = Q$; $I.F. = {e^{\int {Pdx} }}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

