
If $ \dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y,y(0)=0 $ , then $ y(1) $ is equal to:
A. $ {{\tan }^{-1}}e $
B. $ {{\tan }^{-1}}\dfrac{1}{e} $
C. $ {{\tan }^{-1}}\dfrac{e}{2} $
D. $ {{\tan }^{-1}}\dfrac{1}{2e} $
Answer
567k+ views
Hint: Steps to solve a First Order Linear Differential Equation:
Convert into the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Write the solution using the formula: $ y\times F=\int{Q\times F\ dx}+C $ where C is the constant of integration.
Find the value of C by using the values of $ y(0) $ , $ y(1) $ etc.
Make an appropriate substitution to get rid of the dependent variable (y) from all the other terms of the given differential equation.
Simplify the solution obtained using an appropriate substitution and integrating by parts
Complete step-by-step answer:
The given differential equation $ \dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y $ is not in the standard form yet.
We divide both sides by $ {{\cos }^{2}}y $ and expand $ \sin 2y=2\sin y\cos y $ , to get:
⇒ $ \dfrac{1}{co{{s}^{2}}y}\dfrac{dy}{dx}+\dfrac{x\times 2\sin y\cos y}{co{{s}^{2}}y}={{x}^{3}} $
⇒ $ {{\sec }^{2}}y\dfrac{dy}{dx}+2x\tan y={{x}^{3}} $
Substituting $ \tan y=z $ , we have $ {{\sec }^{2}}ydy=dz $ .
⇒ $ \dfrac{dz}{dx}+2x\times z={{x}^{3}} $
Comparing the above differential equation with the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , we can say that:
$ P=2x $ and $ Q={{x}^{3}} $ .
∴ The solution is:
⇒ $ z\times {{e}^{\int{2x}\;dx}}=\int{{{x}^{3}}\times {{e}^{\int{2x}\;dx}}\ dx}+C $
Using $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} $ , we get:
⇒ $ z\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}=\int{{{x}^{3}}\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}\ dx}+C $
⇒ $ z\times {{e}^{{{x}^{2}}}}=\int{{{x}^{2}}\times x\times {{e}^{{{x}^{2}}}}\ dx}+C $
Let's substitute $ {{x}^{2}}=t $ , then $ 2xdx=dt $ .
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C $
Integrating by parts, this is equal to:
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C $
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\left[ t\int{{{e}^{t}}\ dt}-\int{1\times \left( \int{{{e}^{t}}dt} \right)dt} \right]+C $
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\left( t{{e}^{t}}-{{e}^{t}} \right)+C $
Dividing by $ {{e}^{t}} $ , we get:
⇒ $ z=\dfrac{1}{2}\left( t-1 \right)+\dfrac{C}{{{e}^{t}}} $
Back substituting for $ t={{x}^{2}} $ and $ z=\tan y $ , we get:
⇒ $ \tan y=\dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}} $
⇒ $ y={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}} \right] $
We are given that $ y(0)=0 $ . Putting $ x=0 $ and equating it to 0, we get:
⇒ $ 0={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( 0-1 \right)+\dfrac{C}{{{e}^{0}}} \right] $
⇒ $ \tan 0=\dfrac{-1}{2}+\dfrac{C}{1} $
⇒ $ C=\dfrac{1}{2} $
Therefore, $ y(1) $ will be:
⇒ $ y(1)={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{1}^{2}}-1 \right)+\dfrac{1}{2{{e}^{{{1}^{2}}}}} \right] $
⇒ $ y(1)={{\tan }^{-1}}\left( \dfrac{1}{2e} \right) $
The correct answer is D. $ {{\tan }^{-1}}\dfrac{1}{2e} $ .
Note: First Order Linear Differential Equation:
A differential equation of the form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Integration by Parts:
$ \int{f}(x)g(x)dx=\text{ }\!\!~\!\!\text{ }f(x)\text{ }\!\!~\!\!\text{ }\int{\text{ }\!\!~\!\!\text{ }}g(x)dx-\int{\text{ }\!\!~\!\!\text{ }}[{f}'(x)\int{\text{ }\!\!~\!\!\text{ }}g(x)dx]dx $ .
Integration by substitution:
If we substitute $ x=f(t) $ , then $ dx={f}'(t)dt $ and $ \int{f}(x)dx=\text{ }\!\!~\!\!\text{ }\int{f}[f(t)]{f}'(t)dt $ .
Convert into the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Write the solution using the formula: $ y\times F=\int{Q\times F\ dx}+C $ where C is the constant of integration.
Find the value of C by using the values of $ y(0) $ , $ y(1) $ etc.
Make an appropriate substitution to get rid of the dependent variable (y) from all the other terms of the given differential equation.
Simplify the solution obtained using an appropriate substitution and integrating by parts
Complete step-by-step answer:
The given differential equation $ \dfrac{dy}{dx}+x\sin 2y={{x}^{3}}co{{s}^{2}}y $ is not in the standard form yet.
We divide both sides by $ {{\cos }^{2}}y $ and expand $ \sin 2y=2\sin y\cos y $ , to get:
⇒ $ \dfrac{1}{co{{s}^{2}}y}\dfrac{dy}{dx}+\dfrac{x\times 2\sin y\cos y}{co{{s}^{2}}y}={{x}^{3}} $
⇒ $ {{\sec }^{2}}y\dfrac{dy}{dx}+2x\tan y={{x}^{3}} $
Substituting $ \tan y=z $ , we have $ {{\sec }^{2}}ydy=dz $ .
⇒ $ \dfrac{dz}{dx}+2x\times z={{x}^{3}} $
Comparing the above differential equation with the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , we can say that:
$ P=2x $ and $ Q={{x}^{3}} $ .
∴ The solution is:
⇒ $ z\times {{e}^{\int{2x}\;dx}}=\int{{{x}^{3}}\times {{e}^{\int{2x}\;dx}}\ dx}+C $
Using $ \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} $ , we get:
⇒ $ z\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}=\int{{{x}^{3}}\times {{e}^{2\times \dfrac{{{x}^{2}}}{2}}}\ dx}+C $
⇒ $ z\times {{e}^{{{x}^{2}}}}=\int{{{x}^{2}}\times x\times {{e}^{{{x}^{2}}}}\ dx}+C $
Let's substitute $ {{x}^{2}}=t $ , then $ 2xdx=dt $ .
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C $
Integrating by parts, this is equal to:
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\int{t{{e}^{t}}\ dt}+C $
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\left[ t\int{{{e}^{t}}\ dt}-\int{1\times \left( \int{{{e}^{t}}dt} \right)dt} \right]+C $
⇒ $ z\times {{e}^{t}}=\dfrac{1}{2}\left( t{{e}^{t}}-{{e}^{t}} \right)+C $
Dividing by $ {{e}^{t}} $ , we get:
⇒ $ z=\dfrac{1}{2}\left( t-1 \right)+\dfrac{C}{{{e}^{t}}} $
Back substituting for $ t={{x}^{2}} $ and $ z=\tan y $ , we get:
⇒ $ \tan y=\dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}} $
⇒ $ y={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{x}^{2}}-1 \right)+\dfrac{C}{{{e}^{{{x}^{2}}}}} \right] $
We are given that $ y(0)=0 $ . Putting $ x=0 $ and equating it to 0, we get:
⇒ $ 0={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( 0-1 \right)+\dfrac{C}{{{e}^{0}}} \right] $
⇒ $ \tan 0=\dfrac{-1}{2}+\dfrac{C}{1} $
⇒ $ C=\dfrac{1}{2} $
Therefore, $ y(1) $ will be:
⇒ $ y(1)={{\tan }^{-1}}\left[ \dfrac{1}{2}\left( {{1}^{2}}-1 \right)+\dfrac{1}{2{{e}^{{{1}^{2}}}}} \right] $
⇒ $ y(1)={{\tan }^{-1}}\left( \dfrac{1}{2e} \right) $
The correct answer is D. $ {{\tan }^{-1}}\dfrac{1}{2e} $ .
Note: First Order Linear Differential Equation:
A differential equation of the form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Integration by Parts:
$ \int{f}(x)g(x)dx=\text{ }\!\!~\!\!\text{ }f(x)\text{ }\!\!~\!\!\text{ }\int{\text{ }\!\!~\!\!\text{ }}g(x)dx-\int{\text{ }\!\!~\!\!\text{ }}[{f}'(x)\int{\text{ }\!\!~\!\!\text{ }}g(x)dx]dx $ .
Integration by substitution:
If we substitute $ x=f(t) $ , then $ dx={f}'(t)dt $ and $ \int{f}(x)dx=\text{ }\!\!~\!\!\text{ }\int{f}[f(t)]{f}'(t)dt $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

