
If $\dfrac{{2{z_1}}}{{3{z_2}}}$is a purely imaginary number, then find the value of $\left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|$.
Answer
513k+ views
Hint: As it is given that $\dfrac{{2{z_1}}}{{3{z_2}}}$is a purely imaginary, we can equate them to imaginary number and get the ratio $\dfrac{{{z_1}}}{{{z_2}}}$. Then we can simplify the expression with this ratio. Then we can take the modulus to find the value of the expression.
Complete step by step answer:
It is given that $\dfrac{{2{z_1}}}{{3{z_2}}}$is purely imaginary. It means it has only imaginary part and real part is 0. So we can write,
\[\dfrac{{2{z_1}}}{{3{z_2}}} = 0 + ai\], where a is any real number.
On simplification, we get,
\[\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{3ai}}{2}\] … (1)
Now we have the expression,
Let $I = \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|$.
On dividing both numerator and denominator with ${z_2}$, we get,
$I = \left| {\dfrac{{\left( {\dfrac{{{z_1}}}{{{z_2}}} - 1} \right)}}{{\left( {\dfrac{{{z_1}}}{{{z_2}}} + 1} \right)}}} \right|$
Using equation (1), we get
$I = \left| {\dfrac{{\left( {\dfrac{{3ai}}{2} - 1} \right)}}{{\left( {\dfrac{{3ai}}{2} + 1} \right)}}} \right|$
Multiplying both numerator and denominator with 2, we get,
$I = \left| {\dfrac{{\left( {3ai - 2} \right)}}{{\left( {3ai + 2} \right)}}} \right|$
By properties of modulus of complex numbers,$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_1}} \right|}}$,
$ \Rightarrow I = \dfrac{{\left| {3ai - 2} \right|}}{{\left| {3ai + 2} \right|}}$
We know that modulus of a complex number $z = a + ib$ is given by, $\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\Rightarrow I = \dfrac{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( { - 2} \right)}^2}} }}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( 2 \right)}^2}} }} \\
= \dfrac{{\sqrt {9{a^2} + 4} }}{{\sqrt {9{a^2} + 4} }} \\
$
Cancelling the common terms, we get,
$I = 1$
$ \Rightarrow \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right| = 1$
Thus, the value of $\left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|$is equal to 1.
Note: A complex number is number of the form $a + ib$ where a and b are real numbers and $i$ is an imaginary part which satisfies the equation ${i^2} = - 1$. In a complex number $a + ib$, $a$ is called the real part and $ib$ is called the imaginary part. Modulus of a complex number is the absolute value of the complex number. It is given by the equation $\left| z \right| = \sqrt {{a^2} + {b^2}} $ where $z = a + ib$
Complete step by step answer:
It is given that $\dfrac{{2{z_1}}}{{3{z_2}}}$is purely imaginary. It means it has only imaginary part and real part is 0. So we can write,
\[\dfrac{{2{z_1}}}{{3{z_2}}} = 0 + ai\], where a is any real number.
On simplification, we get,
\[\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{3ai}}{2}\] … (1)
Now we have the expression,
Let $I = \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|$.
On dividing both numerator and denominator with ${z_2}$, we get,
$I = \left| {\dfrac{{\left( {\dfrac{{{z_1}}}{{{z_2}}} - 1} \right)}}{{\left( {\dfrac{{{z_1}}}{{{z_2}}} + 1} \right)}}} \right|$
Using equation (1), we get
$I = \left| {\dfrac{{\left( {\dfrac{{3ai}}{2} - 1} \right)}}{{\left( {\dfrac{{3ai}}{2} + 1} \right)}}} \right|$
Multiplying both numerator and denominator with 2, we get,
$I = \left| {\dfrac{{\left( {3ai - 2} \right)}}{{\left( {3ai + 2} \right)}}} \right|$
By properties of modulus of complex numbers,$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_1}} \right|}}$,
$ \Rightarrow I = \dfrac{{\left| {3ai - 2} \right|}}{{\left| {3ai + 2} \right|}}$
We know that modulus of a complex number $z = a + ib$ is given by, $\left| z \right| = \sqrt {{a^2} + {b^2}} $
$
\Rightarrow I = \dfrac{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( { - 2} \right)}^2}} }}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( 2 \right)}^2}} }} \\
= \dfrac{{\sqrt {9{a^2} + 4} }}{{\sqrt {9{a^2} + 4} }} \\
$
Cancelling the common terms, we get,
$I = 1$
$ \Rightarrow \left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right| = 1$
Thus, the value of $\left| {\dfrac{{\left( {{z_1} - {z_2}} \right)}}{{\left( {{z_1} + {z_2}} \right)}}} \right|$is equal to 1.
Note: A complex number is number of the form $a + ib$ where a and b are real numbers and $i$ is an imaginary part which satisfies the equation ${i^2} = - 1$. In a complex number $a + ib$, $a$ is called the real part and $ib$ is called the imaginary part. Modulus of a complex number is the absolute value of the complex number. It is given by the equation $\left| z \right| = \sqrt {{a^2} + {b^2}} $ where $z = a + ib$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
