
If determinant \[f\left( x \right)=\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] then \[f'\left( x \right)=\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] . Find the value of \[\lambda \] .
Answer
597.6k+ views
Hint: We have to differentiate \[f\left( x \right)\] . Write \[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
\dfrac{d{{\left( x-a \right)}^{4}}}{dx} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-b \right)}^{4}}}{dx} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-c \right)}^{4}}}{dx} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & \dfrac{d{{\left( x-a \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & \dfrac{d{{\left( x-b \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & \dfrac{d{{\left( x-c \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
\end{align} \right|\] . Now, simplify \[\dfrac{df\left( x \right)}{dx}\] using the formula, \[\dfrac{d{{\left( x-a \right)}^{n}}}{dx}=n{{\left( x-a \right)}^{n-1}}\] . We also know that the differentiation of the constant term is 0. Expand the determinant along the third column and get the determinant value of \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] . We know the property that if two rows or columns of a determinant are the same and identical then the determinant value of that determinant is equal to zero. So, the value of the determinant \[4\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero. Now, compare \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] and \[\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , and get the value of \[\lambda \] ,
Complete step by step solution:
According to the question, we have a function which is given in the form of the determinant. We also have the derivative of the function \[f\left( x \right)\] in the form of the determinant.
\[f\left( x \right)=\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] …………………………….(1)
\[f'\left( x \right)=\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] …………………………………(2)
We know that \[f'\left( x \right)\] is the derivative of \[f\left( x \right)\] . So,
\[f'\left( x \right)=\dfrac{df\left( x \right)}{dx}\] ……………………..(3)
From equation (1), we have \[f\left( x \right)\] .
Now, differentiating \[f\left( x \right)\] , we get
\[\dfrac{df\left( x \right)}{dx}=\dfrac{d\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|}{dx}\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
\dfrac{d{{\left( x-a \right)}^{4}}}{dx} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-b \right)}^{4}}}{dx} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-c \right)}^{4}}}{dx} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & \dfrac{d{{\left( x-a \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & \dfrac{d{{\left( x-b \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & \dfrac{d{{\left( x-c \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
\end{align} \right|\] …………………………………..(4)
We know the formula, \[\dfrac{d{{\left( x-a \right)}^{n}}}{dx}=n{{\left( x-a \right)}^{n-1}}\] ………………………………(5)
We also know that the differentiation of the constant term is 0 …………………………..(6)
Now, using equation (5) and equation (6), and simplifying equation (4), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{4-1}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{4-1}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{4-1}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{3-1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{3-1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{3-1}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] ………………………………..(7)
Expanding the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] along the column 3, we get the determinant value of the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero. So, \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|=0\] …………………………….(8)
Now, from equation (7) and equation (8), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\]+ \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + 0
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=4\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\]+ \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ……………………………………(9)
We know the property that if two rows or columns of a determinant is same and identical then the determinant value of that determinant is equal to zero …………………………….(10)
In the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , the elements of column 1 and column 2 are the same.
Using the property shown in equation (10), we can say that the determinant value of \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero …………………………..(11)
From equation (9) and equation (11), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=4\times 0\] + \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ………………………………….(12)
Using equation (3) and replacing \[\dfrac{df\left( x \right)}{dx}\] by \[f'\left( x \right)\] in equation (12), we get
\[\Rightarrow f'\left( x \right)=3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ………………………..(13)
From equation (2), we have the value of \[f'\left( x \right)\] .
Now, comparing equation (2) and equation (13), we get
\[\Rightarrow \lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|=\] \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \lambda =3\]
Therefore, the value of \[\lambda \] is equal to 3, \[\lambda =3\] .
Note: In this question, one might think to expand the determinants \[f\left( x \right)=\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] and \[f'\left( x \right)=\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , and then differentiate \[f\left( x \right)\] to make it equal to \[f'\left( x \right)\] . But if we do so, then our complexity increases and complexity would lead to the calculation mistakes.
& \begin{matrix}
\dfrac{d{{\left( x-a \right)}^{4}}}{dx} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-b \right)}^{4}}}{dx} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-c \right)}^{4}}}{dx} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & \dfrac{d{{\left( x-a \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & \dfrac{d{{\left( x-b \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & \dfrac{d{{\left( x-c \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
\end{align} \right|\] . Now, simplify \[\dfrac{df\left( x \right)}{dx}\] using the formula, \[\dfrac{d{{\left( x-a \right)}^{n}}}{dx}=n{{\left( x-a \right)}^{n-1}}\] . We also know that the differentiation of the constant term is 0. Expand the determinant along the third column and get the determinant value of \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] . We know the property that if two rows or columns of a determinant are the same and identical then the determinant value of that determinant is equal to zero. So, the value of the determinant \[4\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero. Now, compare \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] and \[\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , and get the value of \[\lambda \] ,
Complete step by step solution:
According to the question, we have a function which is given in the form of the determinant. We also have the derivative of the function \[f\left( x \right)\] in the form of the determinant.
\[f\left( x \right)=\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] …………………………….(1)
\[f'\left( x \right)=\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] …………………………………(2)
We know that \[f'\left( x \right)\] is the derivative of \[f\left( x \right)\] . So,
\[f'\left( x \right)=\dfrac{df\left( x \right)}{dx}\] ……………………..(3)
From equation (1), we have \[f\left( x \right)\] .
Now, differentiating \[f\left( x \right)\] , we get
\[\dfrac{df\left( x \right)}{dx}=\dfrac{d\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|}{dx}\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
\dfrac{d{{\left( x-a \right)}^{4}}}{dx} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-b \right)}^{4}}}{dx} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
\dfrac{d{{\left( x-c \right)}^{4}}}{dx} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & \dfrac{d{{\left( x-a \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & \dfrac{d{{\left( x-b \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & \dfrac{d{{\left( x-c \right)}^{3}}}{dx} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & \dfrac{d\left( 1 \right)}{dx} \\
\end{matrix} \\
\end{align} \right|\] …………………………………..(4)
We know the formula, \[\dfrac{d{{\left( x-a \right)}^{n}}}{dx}=n{{\left( x-a \right)}^{n-1}}\] ………………………………(5)
We also know that the differentiation of the constant term is 0 …………………………..(6)
Now, using equation (5) and equation (6), and simplifying equation (4), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{4-1}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{4-1}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{4-1}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{3-1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{3-1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{3-1}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] ………………………………..(7)
Expanding the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] along the column 3, we get the determinant value of the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero. So, \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 0 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 0 \\
\end{matrix} \\
\end{align} \right|=0\] …………………………….(8)
Now, from equation (7) and equation (8), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=\left| \begin{align}
& \begin{matrix}
4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\]+ \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] + 0
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=4\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\]+ \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ……………………………………(9)
We know the property that if two rows or columns of a determinant is same and identical then the determinant value of that determinant is equal to zero …………………………….(10)
In the determinant \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , the elements of column 1 and column 2 are the same.
Using the property shown in equation (10), we can say that the determinant value of \[\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] is equal to zero …………………………..(11)
From equation (9) and equation (11), we get
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=4\times 0\] + \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \dfrac{df\left( x \right)}{dx}=3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ………………………………….(12)
Using equation (3) and replacing \[\dfrac{df\left( x \right)}{dx}\] by \[f'\left( x \right)\] in equation (12), we get
\[\Rightarrow f'\left( x \right)=3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] ………………………..(13)
From equation (2), we have the value of \[f'\left( x \right)\] .
Now, comparing equation (2) and equation (13), we get
\[\Rightarrow \lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|=\] \[3\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\]
\[\Rightarrow \lambda =3\]
Therefore, the value of \[\lambda \] is equal to 3, \[\lambda =3\] .
Note: In this question, one might think to expand the determinants \[f\left( x \right)=\left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\
\end{matrix} \\
\end{align} \right|\] and \[f'\left( x \right)=\lambda \left| \begin{align}
& \begin{matrix}
{{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\
\end{matrix} \\
\end{align} \right|\] , and then differentiate \[f\left( x \right)\] to make it equal to \[f'\left( x \right)\] . But if we do so, then our complexity increases and complexity would lead to the calculation mistakes.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

