
If $D = \left| {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &\delta \end{array}} \right|$, then \[\left| {\begin{array}{*{20}{c}} {2\alpha }&{2\beta } \\ {2\gamma }&{2\delta } \end{array}} \right|\] is equal to
Answer
581.7k+ views
Hint: It is given in the question that if $D = \left| {\begin{array}{*{20}{c}}
Complete step-by-step answer:
Note: Students frequently get confused while attempting to distinguish between the properties of a matrix and a determinant. In a matrix we take n common from each element of the matrix. In determinants, we take n common values from each row or column.
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$
Then, what is the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ .
First, we will assume the $\alpha ,\beta ,\gamma ,\delta $ and put it in the $\left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$ , then after, we will put the value of $\alpha ,\beta ,\gamma ,\delta $ in the $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ and finally, after solving further, we will get the answer.
It is given in the question that if $D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$
Then, what is the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ .
Let us assume $\alpha = 1,\beta = 2,\gamma = 3,\delta = 4$ .
Now, put the value of $\alpha ,\beta ,\gamma ,\delta $ in the equation $D = \left| {\begin{array}{*{20}{c}}
\alpha &\beta \\
\gamma &\delta
\end{array}} \right|$ , we get,
$\therefore D = \left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$ .
Similarly, Put the value of $\alpha ,\beta ,\gamma ,\delta $ in the $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right|$ , we get,
$ = \left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{2\left( 1 \right)}&{2\left( 2 \right)} \\
{2\left( 3 \right)}&{2\left( 4 \right)}
\end{array}} \right|$
$ = \left| {\begin{array}{*{20}{c}}
2&4 \\
6&8
\end{array}} \right|$
Now, take out 2 common from the row 1 of the determinant.
$ = 2\left| {\begin{array}{*{20}{c}}
1&2 \\
6&8
\end{array}} \right|$
Now, take out 2 from row 2 of the determinant.
$ = 2 \times 2\left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$
$ = 4\left| {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right|$
=4D
Therefore, the value of $\left| {\begin{array}{*{20}{c}}
{2\alpha }&{2\beta } \\
{2\gamma }&{2\delta }
\end{array}} \right| = 4D$ .
For example: in any matrix $A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&1
\end{array}} \right]$ , $nA = \left[ {\begin{array}{*{20}{c}}
n&n \\
n&n
\end{array}} \right]$ , so $\left[ {nA} \right] = n\left[ A \right]$ and
In any determinant $B = \left| {\begin{array}{*{20}{c}}
1&1 \\
1&1
\end{array}} \right|$ , $nB = \left| {\begin{array}{*{20}{c}}
n&n \\
n&n
\end{array}} \right|$ , so $\left| {nB} \right| = {n^m}\left| B \right|$ , where m is the order of determinant B.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

