
If \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma \], then prove that \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\].
Answer
602.1k+ views
Hint: Here, we will proceed by using the general representation for any complex number given by $z = {e^{i\theta }} = \cos \theta + i\sin \theta $ in order to find the values of $\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)$ and \[\left( {{e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }}} \right)\]. Then, apply the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ where $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$.
Complete step-by-step answer:
Given, \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma {\text{ }} \to {\text{(1)}}\]
To prove: \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
Since, any complex number can be represented as $z = {e^{i\theta }} = \cos \theta + i\sin \theta {\text{ }} \to {\text{(2)}}$
Using the formula given by equation (2), we can write
$
{e^{i\alpha }} = \cos \alpha + i\sin \alpha {\text{ }} \to {\text{(3)}} \\
{e^{i\beta }} = \cos \beta + i\sin \beta {\text{ }} \to {\text{(4)}} \\
{e^{i\gamma }} = \cos \gamma + i\sin \gamma {\text{ }} \to {\text{(5)}} \\
$
By adding equations (3), (4) and (5), we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + i\sin \alpha + \cos \beta + i\sin \beta + \cos \gamma + i\sin \gamma \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma + i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
$
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0 + i\left( 0 \right) \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0{\text{ }} \to {\text{(6)}} \\
$
Similarly, using the formula given by equation (2), we can write
$
{e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right){\text{ }} \to {\text{(7)}} \\
{e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right){\text{ }} \to {\text{(8)}} \\
{e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right){\text{ }} \to {\text{(9)}} \\
$
By adding equations (7), (8) and (9), we get
\[ \Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right) + \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right) + \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)\]
Using the formulas $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
\[
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha - i\sin \alpha + \cos \beta - i\sin \beta + \cos \gamma - i\sin \gamma \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma - i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
\]
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 - i\left( 0 \right) \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 \\
\Rightarrow \dfrac{1}{{{e^{i\alpha }}}} + \dfrac{1}{{{e^{i\beta }}}} + \dfrac{1}{{{e^{i\gamma }}}} = 0 \\
\Rightarrow \dfrac{{{e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }}}}{{{e^{i\alpha }}{e^{i\beta }}{e^{i\gamma }}}} = 0 \\
\Rightarrow {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }} = 0 \\
\Rightarrow {e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} = 0{\text{ }} \to {\text{(10)}} \\
$
Using the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ and taking $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$, we get
\[
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {\left( {{e^{i\alpha }}} \right)^2} + {\left( {{e^{i\beta }}} \right)^2} + {\left( {{e^{i\gamma }}} \right)^2} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\]
By substituting equation (6) and equation (10) in the above equation, we get
$
\Rightarrow {\left( 0 \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( 0 \right) \\
\Rightarrow 0 = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 0 \\
\Rightarrow {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} = 0 \\
\Rightarrow {e^{i\left( {2\alpha } \right)}} + {e^{i\left( {2\beta } \right)}} + {e^{i\left( {2\gamma } \right)}} = 0 \\
$
Using the formula given by equation (2) in the above equation, we have
$
\Rightarrow \cos \left( {2\alpha } \right) + i\sin \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + i\sin \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\sin \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\left[ {\sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right)} \right] = 0{\text{ }} \to {\text{(11)}} \\
$
For any complex number z, $a + ib = 0{\text{ }} \to {\text{(12)}}$, a = 0 and b = 0
By comparing equations (11) and (12), we have
$
a = \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0{\text{ }} \to {\text{(13)}} \\
$ and $b = \sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right) = 0$
Using the trigonometric formula $\cos \left( {2\theta } \right) = {\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2}$ in equation (13), we get
$
\Rightarrow \left[ {{{\left( {\cos \alpha } \right)}^2} - {{\left( {\sin \alpha } \right)}^2}} \right] + \left[ {{{\left( {\cos \beta } \right)}^2} - {{\left( {\sin \beta } \right)}^2}} \right] + \left[ {{{\left( {\cos \gamma } \right)}^2} - {{\left( {\sin \gamma } \right)}^2}} \right] = 0 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}{\text{ }} \to {\text{(14)}} \\
$
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \theta } \right)^2} = 1 - {\left( {\cos \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} + 1 - {\left( {\cos \beta } \right)^2} + 1 - {\left( {\cos \gamma } \right)^2} \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} + {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 + 1 + 1 \\
\Rightarrow 2\left[ {{{\left( {\cos \alpha } \right)}^2} + {{\left( {\cos \beta } \right)}^2} + {{\left( {\cos \gamma } \right)}^2}} \right] = 3 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(15)}} \\
\]
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow 1 - {\left( {\sin \alpha } \right)^2} + 1 - {\left( {\sin \beta } \right)^2} + 1 - {\left( {\sin \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 1 + 1 + 1 = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} + {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 3 = 2\left[ {{{\left( {\sin \alpha } \right)}^2} + {{\left( {\sin \beta } \right)}^2} + {{\left( {\sin \gamma } \right)}^2}} \right] \\
\Rightarrow {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(16)}} \\
\]
By combining equations (15) and (16), we have
\[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
The above equation is the same equation which we needed to prove.
Note: In this particular problem, we have written ${e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right)$ which is obtained by replacing the angle $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ by $ - \alpha $. Similarly, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \beta $ to get ${e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right)$. Also, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \gamma $ to get ${e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)$.
Complete step-by-step answer:
Given, \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma {\text{ }} \to {\text{(1)}}\]
To prove: \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
Since, any complex number can be represented as $z = {e^{i\theta }} = \cos \theta + i\sin \theta {\text{ }} \to {\text{(2)}}$
Using the formula given by equation (2), we can write
$
{e^{i\alpha }} = \cos \alpha + i\sin \alpha {\text{ }} \to {\text{(3)}} \\
{e^{i\beta }} = \cos \beta + i\sin \beta {\text{ }} \to {\text{(4)}} \\
{e^{i\gamma }} = \cos \gamma + i\sin \gamma {\text{ }} \to {\text{(5)}} \\
$
By adding equations (3), (4) and (5), we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + i\sin \alpha + \cos \beta + i\sin \beta + \cos \gamma + i\sin \gamma \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma + i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
$
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0 + i\left( 0 \right) \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0{\text{ }} \to {\text{(6)}} \\
$
Similarly, using the formula given by equation (2), we can write
$
{e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right){\text{ }} \to {\text{(7)}} \\
{e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right){\text{ }} \to {\text{(8)}} \\
{e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right){\text{ }} \to {\text{(9)}} \\
$
By adding equations (7), (8) and (9), we get
\[ \Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right) + \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right) + \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)\]
Using the formulas $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
\[
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha - i\sin \alpha + \cos \beta - i\sin \beta + \cos \gamma - i\sin \gamma \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma - i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
\]
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 - i\left( 0 \right) \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 \\
\Rightarrow \dfrac{1}{{{e^{i\alpha }}}} + \dfrac{1}{{{e^{i\beta }}}} + \dfrac{1}{{{e^{i\gamma }}}} = 0 \\
\Rightarrow \dfrac{{{e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }}}}{{{e^{i\alpha }}{e^{i\beta }}{e^{i\gamma }}}} = 0 \\
\Rightarrow {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }} = 0 \\
\Rightarrow {e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} = 0{\text{ }} \to {\text{(10)}} \\
$
Using the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ and taking $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$, we get
\[
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {\left( {{e^{i\alpha }}} \right)^2} + {\left( {{e^{i\beta }}} \right)^2} + {\left( {{e^{i\gamma }}} \right)^2} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\]
By substituting equation (6) and equation (10) in the above equation, we get
$
\Rightarrow {\left( 0 \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( 0 \right) \\
\Rightarrow 0 = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 0 \\
\Rightarrow {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} = 0 \\
\Rightarrow {e^{i\left( {2\alpha } \right)}} + {e^{i\left( {2\beta } \right)}} + {e^{i\left( {2\gamma } \right)}} = 0 \\
$
Using the formula given by equation (2) in the above equation, we have
$
\Rightarrow \cos \left( {2\alpha } \right) + i\sin \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + i\sin \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\sin \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\left[ {\sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right)} \right] = 0{\text{ }} \to {\text{(11)}} \\
$
For any complex number z, $a + ib = 0{\text{ }} \to {\text{(12)}}$, a = 0 and b = 0
By comparing equations (11) and (12), we have
$
a = \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0{\text{ }} \to {\text{(13)}} \\
$ and $b = \sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right) = 0$
Using the trigonometric formula $\cos \left( {2\theta } \right) = {\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2}$ in equation (13), we get
$
\Rightarrow \left[ {{{\left( {\cos \alpha } \right)}^2} - {{\left( {\sin \alpha } \right)}^2}} \right] + \left[ {{{\left( {\cos \beta } \right)}^2} - {{\left( {\sin \beta } \right)}^2}} \right] + \left[ {{{\left( {\cos \gamma } \right)}^2} - {{\left( {\sin \gamma } \right)}^2}} \right] = 0 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}{\text{ }} \to {\text{(14)}} \\
$
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \theta } \right)^2} = 1 - {\left( {\cos \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} + 1 - {\left( {\cos \beta } \right)^2} + 1 - {\left( {\cos \gamma } \right)^2} \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} + {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 + 1 + 1 \\
\Rightarrow 2\left[ {{{\left( {\cos \alpha } \right)}^2} + {{\left( {\cos \beta } \right)}^2} + {{\left( {\cos \gamma } \right)}^2}} \right] = 3 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(15)}} \\
\]
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow 1 - {\left( {\sin \alpha } \right)^2} + 1 - {\left( {\sin \beta } \right)^2} + 1 - {\left( {\sin \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 1 + 1 + 1 = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} + {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 3 = 2\left[ {{{\left( {\sin \alpha } \right)}^2} + {{\left( {\sin \beta } \right)}^2} + {{\left( {\sin \gamma } \right)}^2}} \right] \\
\Rightarrow {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(16)}} \\
\]
By combining equations (15) and (16), we have
\[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
The above equation is the same equation which we needed to prove.
Note: In this particular problem, we have written ${e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right)$ which is obtained by replacing the angle $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ by $ - \alpha $. Similarly, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \beta $ to get ${e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right)$. Also, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \gamma $ to get ${e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

