
If \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma \], then prove that \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\].
Answer
600.6k+ views
Hint: Here, we will proceed by using the general representation for any complex number given by $z = {e^{i\theta }} = \cos \theta + i\sin \theta $ in order to find the values of $\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)$ and \[\left( {{e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }}} \right)\]. Then, apply the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ where $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$.
Complete step-by-step answer:
Given, \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma {\text{ }} \to {\text{(1)}}\]
To prove: \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
Since, any complex number can be represented as $z = {e^{i\theta }} = \cos \theta + i\sin \theta {\text{ }} \to {\text{(2)}}$
Using the formula given by equation (2), we can write
$
{e^{i\alpha }} = \cos \alpha + i\sin \alpha {\text{ }} \to {\text{(3)}} \\
{e^{i\beta }} = \cos \beta + i\sin \beta {\text{ }} \to {\text{(4)}} \\
{e^{i\gamma }} = \cos \gamma + i\sin \gamma {\text{ }} \to {\text{(5)}} \\
$
By adding equations (3), (4) and (5), we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + i\sin \alpha + \cos \beta + i\sin \beta + \cos \gamma + i\sin \gamma \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma + i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
$
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0 + i\left( 0 \right) \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0{\text{ }} \to {\text{(6)}} \\
$
Similarly, using the formula given by equation (2), we can write
$
{e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right){\text{ }} \to {\text{(7)}} \\
{e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right){\text{ }} \to {\text{(8)}} \\
{e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right){\text{ }} \to {\text{(9)}} \\
$
By adding equations (7), (8) and (9), we get
\[ \Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right) + \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right) + \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)\]
Using the formulas $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
\[
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha - i\sin \alpha + \cos \beta - i\sin \beta + \cos \gamma - i\sin \gamma \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma - i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
\]
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 - i\left( 0 \right) \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 \\
\Rightarrow \dfrac{1}{{{e^{i\alpha }}}} + \dfrac{1}{{{e^{i\beta }}}} + \dfrac{1}{{{e^{i\gamma }}}} = 0 \\
\Rightarrow \dfrac{{{e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }}}}{{{e^{i\alpha }}{e^{i\beta }}{e^{i\gamma }}}} = 0 \\
\Rightarrow {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }} = 0 \\
\Rightarrow {e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} = 0{\text{ }} \to {\text{(10)}} \\
$
Using the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ and taking $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$, we get
\[
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {\left( {{e^{i\alpha }}} \right)^2} + {\left( {{e^{i\beta }}} \right)^2} + {\left( {{e^{i\gamma }}} \right)^2} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\]
By substituting equation (6) and equation (10) in the above equation, we get
$
\Rightarrow {\left( 0 \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( 0 \right) \\
\Rightarrow 0 = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 0 \\
\Rightarrow {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} = 0 \\
\Rightarrow {e^{i\left( {2\alpha } \right)}} + {e^{i\left( {2\beta } \right)}} + {e^{i\left( {2\gamma } \right)}} = 0 \\
$
Using the formula given by equation (2) in the above equation, we have
$
\Rightarrow \cos \left( {2\alpha } \right) + i\sin \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + i\sin \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\sin \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\left[ {\sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right)} \right] = 0{\text{ }} \to {\text{(11)}} \\
$
For any complex number z, $a + ib = 0{\text{ }} \to {\text{(12)}}$, a = 0 and b = 0
By comparing equations (11) and (12), we have
$
a = \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0{\text{ }} \to {\text{(13)}} \\
$ and $b = \sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right) = 0$
Using the trigonometric formula $\cos \left( {2\theta } \right) = {\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2}$ in equation (13), we get
$
\Rightarrow \left[ {{{\left( {\cos \alpha } \right)}^2} - {{\left( {\sin \alpha } \right)}^2}} \right] + \left[ {{{\left( {\cos \beta } \right)}^2} - {{\left( {\sin \beta } \right)}^2}} \right] + \left[ {{{\left( {\cos \gamma } \right)}^2} - {{\left( {\sin \gamma } \right)}^2}} \right] = 0 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}{\text{ }} \to {\text{(14)}} \\
$
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \theta } \right)^2} = 1 - {\left( {\cos \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} + 1 - {\left( {\cos \beta } \right)^2} + 1 - {\left( {\cos \gamma } \right)^2} \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} + {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 + 1 + 1 \\
\Rightarrow 2\left[ {{{\left( {\cos \alpha } \right)}^2} + {{\left( {\cos \beta } \right)}^2} + {{\left( {\cos \gamma } \right)}^2}} \right] = 3 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(15)}} \\
\]
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow 1 - {\left( {\sin \alpha } \right)^2} + 1 - {\left( {\sin \beta } \right)^2} + 1 - {\left( {\sin \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 1 + 1 + 1 = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} + {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 3 = 2\left[ {{{\left( {\sin \alpha } \right)}^2} + {{\left( {\sin \beta } \right)}^2} + {{\left( {\sin \gamma } \right)}^2}} \right] \\
\Rightarrow {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(16)}} \\
\]
By combining equations (15) and (16), we have
\[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
The above equation is the same equation which we needed to prove.
Note: In this particular problem, we have written ${e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right)$ which is obtained by replacing the angle $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ by $ - \alpha $. Similarly, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \beta $ to get ${e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right)$. Also, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \gamma $ to get ${e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)$.
Complete step-by-step answer:
Given, \[\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma {\text{ }} \to {\text{(1)}}\]
To prove: \[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
Since, any complex number can be represented as $z = {e^{i\theta }} = \cos \theta + i\sin \theta {\text{ }} \to {\text{(2)}}$
Using the formula given by equation (2), we can write
$
{e^{i\alpha }} = \cos \alpha + i\sin \alpha {\text{ }} \to {\text{(3)}} \\
{e^{i\beta }} = \cos \beta + i\sin \beta {\text{ }} \to {\text{(4)}} \\
{e^{i\gamma }} = \cos \gamma + i\sin \gamma {\text{ }} \to {\text{(5)}} \\
$
By adding equations (3), (4) and (5), we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + i\sin \alpha + \cos \beta + i\sin \beta + \cos \gamma + i\sin \gamma \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma + i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
$
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0 + i\left( 0 \right) \\
\Rightarrow {e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }} = 0{\text{ }} \to {\text{(6)}} \\
$
Similarly, using the formula given by equation (2), we can write
$
{e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right){\text{ }} \to {\text{(7)}} \\
{e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right){\text{ }} \to {\text{(8)}} \\
{e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right){\text{ }} \to {\text{(9)}} \\
$
By adding equations (7), (8) and (9), we get
\[ \Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right) + \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right) + \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)\]
Using the formulas $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
\[
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha - i\sin \alpha + \cos \beta - i\sin \beta + \cos \gamma - i\sin \gamma \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = \cos \alpha + \cos \beta + \cos \gamma - i\left( {\sin \alpha + \sin \beta + \sin \gamma } \right) \\
\]
Using equation (1) in the above equation, we get
$
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 - i\left( 0 \right) \\
\Rightarrow {e^{ - i\alpha }} + {e^{ - i\beta }} + {e^{ - i\gamma }} = 0 \\
\Rightarrow \dfrac{1}{{{e^{i\alpha }}}} + \dfrac{1}{{{e^{i\beta }}}} + \dfrac{1}{{{e^{i\gamma }}}} = 0 \\
\Rightarrow \dfrac{{{e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }}}}{{{e^{i\alpha }}{e^{i\beta }}{e^{i\gamma }}}} = 0 \\
\Rightarrow {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\beta }} = 0 \\
\Rightarrow {e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }} = 0{\text{ }} \to {\text{(10)}} \\
$
Using the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$ and taking $a = {e^{i\alpha }},b = {e^{i\beta }},c = {e^{i\gamma }}$, we get
\[
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {\left( {{e^{i\alpha }}} \right)^2} + {\left( {{e^{i\beta }}} \right)^2} + {\left( {{e^{i\gamma }}} \right)^2} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\Rightarrow {\left( {{e^{i\alpha }} + {e^{i\beta }} + {e^{i\gamma }}} \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( {{e^{i\alpha }}{e^{i\beta }} + {e^{i\beta }}{e^{i\gamma }} + {e^{i\alpha }}{e^{i\gamma }}} \right) \\
\]
By substituting equation (6) and equation (10) in the above equation, we get
$
\Rightarrow {\left( 0 \right)^2} = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 2\left( 0 \right) \\
\Rightarrow 0 = {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} + 0 \\
\Rightarrow {e^{2i\alpha }} + {e^{2i\beta }} + {e^{2i\gamma }} = 0 \\
\Rightarrow {e^{i\left( {2\alpha } \right)}} + {e^{i\left( {2\beta } \right)}} + {e^{i\left( {2\gamma } \right)}} = 0 \\
$
Using the formula given by equation (2) in the above equation, we have
$
\Rightarrow \cos \left( {2\alpha } \right) + i\sin \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + i\sin \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\sin \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) + i\left[ {\sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right)} \right] = 0{\text{ }} \to {\text{(11)}} \\
$
For any complex number z, $a + ib = 0{\text{ }} \to {\text{(12)}}$, a = 0 and b = 0
By comparing equations (11) and (12), we have
$
a = \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0 \\
\Rightarrow \cos \left( {2\alpha } \right) + \cos \left( {2\beta } \right) + \cos \left( {2\gamma } \right) = 0{\text{ }} \to {\text{(13)}} \\
$ and $b = \sin \left( {2\alpha } \right) + \sin \left( {2\beta } \right) + \sin \left( {2\gamma } \right) = 0$
Using the trigonometric formula $\cos \left( {2\theta } \right) = {\left( {\cos \theta } \right)^2} - {\left( {\sin \theta } \right)^2}$ in equation (13), we get
$
\Rightarrow \left[ {{{\left( {\cos \alpha } \right)}^2} - {{\left( {\sin \alpha } \right)}^2}} \right] + \left[ {{{\left( {\cos \beta } \right)}^2} - {{\left( {\sin \beta } \right)}^2}} \right] + \left[ {{{\left( {\cos \gamma } \right)}^2} - {{\left( {\sin \gamma } \right)}^2}} \right] = 0 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}{\text{ }} \to {\text{(14)}} \\
$
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\sin \theta } \right)^2} = 1 - {\left( {\cos \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 - {\left( {\cos \alpha } \right)^2} + 1 - {\left( {\cos \beta } \right)^2} + 1 - {\left( {\cos \gamma } \right)^2} \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} + {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = 1 + 1 + 1 \\
\Rightarrow 2\left[ {{{\left( {\cos \alpha } \right)}^2} + {{\left( {\cos \beta } \right)}^2} + {{\left( {\cos \gamma } \right)}^2}} \right] = 3 \\
\Rightarrow {\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(15)}} \\
\]
Using the trigonometric identity \[
{\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \\
\Rightarrow {\left( {\cos \theta } \right)^2} = 1 - {\left( {\sin \theta } \right)^2} \\
\] in equation (14), we get
\[
\Rightarrow 1 - {\left( {\sin \alpha } \right)^2} + 1 - {\left( {\sin \beta } \right)^2} + 1 - {\left( {\sin \gamma } \right)^2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 1 + 1 + 1 = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} + {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} \\
\Rightarrow 3 = 2\left[ {{{\left( {\sin \alpha } \right)}^2} + {{\left( {\sin \beta } \right)}^2} + {{\left( {\sin \gamma } \right)}^2}} \right] \\
\Rightarrow {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2} = \dfrac{3}{2}{\text{ }} \to {\text{(16)}} \\
\]
By combining equations (15) and (16), we have
\[{\left( {\cos \alpha } \right)^2} + {\left( {\cos \beta } \right)^2} + {\left( {\cos \gamma } \right)^2} = \dfrac{3}{2} = {\left( {\sin \alpha } \right)^2} + {\left( {\sin \beta } \right)^2} + {\left( {\sin \gamma } \right)^2}\]
The above equation is the same equation which we needed to prove.
Note: In this particular problem, we have written ${e^{ - i\alpha }} = \cos \left( { - \alpha } \right) + i\sin \left( { - \alpha } \right)$ which is obtained by replacing the angle $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ by $ - \alpha $. Similarly, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \beta $ to get ${e^{ - i\beta }} = \cos \left( { - \beta } \right) + i\sin \left( { - \beta } \right)$. Also, $\theta $ in the formula ${e^{i\theta }} = \cos \theta + i\sin \theta $ is replaced by $ - \gamma $ to get ${e^{ - i\gamma }} = \cos \left( { - \gamma } \right) + i\sin \left( { - \gamma } \right)$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

