
If $\cos (\alpha + \beta ) = 0$, then find $\sin (\alpha + 2\beta )$.
Answer
578.7k+ views
Hint: There are trigonometric identities for $\sin (A + B)$ and $\cos (A + B)$. Using the formula of $\sin (A + B)$ we can expand the question. Then substitute using formulas of $\sin 2A$ and $\cos 2A$. Then we can simplify and substitute for $\cos (\alpha + \beta ) = 0$, we get the answer.
Formula used: For any angles $A,B$ we have these trigonometric relations.
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\sin 2A = 2\sin A\cos A$
$\cos 2A = 1 - 2{\sin ^2}A$
Complete step-by-step answer:
Given $\cos (\alpha + \beta ) = 0$.
We are asked to find $\sin (\alpha + 2\beta )$.
We know that,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Let, $A = \alpha ,B = 2\beta $
So we have,
$\sin (\alpha + 2\beta ) = \sin \alpha \cos 2\beta + \cos \alpha \sin 2\beta ----- (i)$
Also we have the relations,
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
This gives, $\cos 2\beta = 1 - 2{\sin ^2}\beta $ and $\sin 2\beta = 2\sin \beta \cos \beta $
Substituting these, we have from equation $(i)$,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha (1 - 2{\sin ^2}\beta ) + \cos \alpha (2\sin \beta \cos \beta )$
Expanding the above equation we get,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha - 2\sin \alpha {\sin ^2}\beta + 2\cos \alpha \sin \beta \cos \beta $
Taking $\sin \beta $ common from right hand side we get,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta (\cos \alpha \cos \beta - \sin \alpha \sin \beta ) ------ (ii)$
Now, $\cos (A + B) = \cos A\cos B - \sin A\sin B$
Using this we can write equation $(ii)$ as,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \cos (\alpha + \beta )$
But in the question it is given that,
$\cos (\alpha + \beta ) = 0$
Substituting this we have,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \times 0$
$ \Rightarrow \sin (\alpha + 2\beta ) = \sin \alpha + 0$
So we have,
$\sin (\alpha + 2\beta ) = \sin \alpha $
$\therefore $ The answer is $\sin \alpha $.
Note: We have other trigonometric identities.
For some angle $A$,
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
Like these, we have other identities for $\sin ,\cos ,\tan ,{\text{cosec,sec}}$ and $\cot $.
Formula used: For any angles $A,B$ we have these trigonometric relations.
$\cos (A + B) = \cos A\cos B - \sin A\sin B$
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
$\sin 2A = 2\sin A\cos A$
$\cos 2A = 1 - 2{\sin ^2}A$
Complete step-by-step answer:
Given $\cos (\alpha + \beta ) = 0$.
We are asked to find $\sin (\alpha + 2\beta )$.
We know that,
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Let, $A = \alpha ,B = 2\beta $
So we have,
$\sin (\alpha + 2\beta ) = \sin \alpha \cos 2\beta + \cos \alpha \sin 2\beta ----- (i)$
Also we have the relations,
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
This gives, $\cos 2\beta = 1 - 2{\sin ^2}\beta $ and $\sin 2\beta = 2\sin \beta \cos \beta $
Substituting these, we have from equation $(i)$,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha (1 - 2{\sin ^2}\beta ) + \cos \alpha (2\sin \beta \cos \beta )$
Expanding the above equation we get,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha - 2\sin \alpha {\sin ^2}\beta + 2\cos \alpha \sin \beta \cos \beta $
Taking $\sin \beta $ common from right hand side we get,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta (\cos \alpha \cos \beta - \sin \alpha \sin \beta ) ------ (ii)$
Now, $\cos (A + B) = \cos A\cos B - \sin A\sin B$
Using this we can write equation $(ii)$ as,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \cos (\alpha + \beta )$
But in the question it is given that,
$\cos (\alpha + \beta ) = 0$
Substituting this we have,
$\Rightarrow$$\sin (\alpha + 2\beta ) = \sin \alpha + 2\sin \beta \times 0$
$ \Rightarrow \sin (\alpha + 2\beta ) = \sin \alpha + 0$
So we have,
$\sin (\alpha + 2\beta ) = \sin \alpha $
$\therefore $ The answer is $\sin \alpha $.
Note: We have other trigonometric identities.
For some angle $A$,
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
Like these, we have other identities for $\sin ,\cos ,\tan ,{\text{cosec,sec}}$ and $\cot $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

