
If $\cos 3x = - 1$, where$0^\circ \leqslant x \leqslant 360^\circ $, then find$x$
(A)$60^\circ ,180^\circ ,300^\circ $
(B)$180^\circ $
(C)$60^\circ ,180^\circ $
(D)$180^\circ ,300^\circ $
Answer
558k+ views
Hint: Simplify this equation using the identity $\cos A - \cos B = - 2\sin \dfrac{{(A + B)}}{2}\sin \dfrac{{(A - B)}}{2}$. Also, use the fact that $\sin \theta = 0$only when $\theta = n\pi $ where n is any integer to get \[x = \dfrac{{(2n - 1)\pi }}{3}\] or\[x = \dfrac{{(2n + 1)\pi }}{3}\]. Find x such that $0^\circ \leqslant x \leqslant 360^\circ $.
Complete step-by-step solution:
We have a trigonometric equation $\cos 3x = - 1$ such that $0^\circ \leqslant x \leqslant 360^\circ $.
We need to solve this equation to find the values of x. That is, we will find those x for which the given equation is satisfied.
We know that $ - 1 \leqslant \cos \theta \leqslant 1$ for any $\theta $ and $\cos 180^\circ = - 1$…..(1)
Therefore, we can compare the given equation $\cos 3x = - 1$ with this fact in (1).
Thus, we get $\cos 3x = \cos 180^\circ $.
$ \Rightarrow \cos 3x - \cos 180^\circ = 0$
Here, we will use the identity $\cos A - \cos B = - 2\sin \dfrac{{(A + B)}}{2}\sin \dfrac{{(A - B)}}{2}$.
In our case,$A = 3x$and$B = 180^\circ $.
Therefore, applying the identity we get the following equation:
\[\cos 3x - \cos 180^\circ = - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2}\]
This would imply that \[ - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0\]
Divide by -2 on both the sides.
Then we get
\[\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0\]……(A)
This is only possible when either $\sin \dfrac{{(3x + 180^\circ )}}{2} = 0$ or $\sin \dfrac{{(3x - 180^\circ )}}{2} = 0$
We know that $\sin \theta = 0$ only when $\theta = n\pi $ where n is any integer.
Therefore, we have either $\dfrac{{3x + 180^\circ }}{2} = n\pi $ or $\dfrac{{3x - 180^\circ }}{2} = n\pi $
Since the RHS is given in terms of radians, we will write $180^\circ $ as $\pi $.
So, we have
$\dfrac{{3x + \pi }}{2} = n\pi $ or $\dfrac{{3x - \pi }}{2} = n\pi $
$ \Rightarrow $$3x + \pi = 2n\pi $ or $3x - \pi = 2n\pi $
$ \Rightarrow $$3x = 2n\pi - \pi = (2n - 1)\pi $ or $3x = 2n\pi + \pi = (2n + 1)\pi $
Now divide by 2 throughout for both the equations. We get:
\[x = \dfrac{{(2n - 1)\pi }}{3}\]or\[x = \dfrac{{(2n + 1)\pi }}{3}\]……(I)
So this implies that $\cos 3x - \cos 180^\circ = 0$ if and only if \[x = \dfrac{{(2n - 1)\pi }}{3}\] or \[x = \dfrac{{(2n + 1)\pi }}{3}\] for any integer n.
But we are given that our x should be such that $0^\circ \leqslant x \leqslant 360^\circ $.
That is x should be such that $0 \leqslant x \leqslant 2\pi $
Now,
$
0 \leqslant x \leqslant 2\pi \\
\Rightarrow 0 \leqslant \dfrac{{(2n - 1)\pi }}{3} \leqslant 2\pi \\
\Rightarrow 0 \leqslant (2n - 1)\pi \leqslant 6\pi \\
\Rightarrow 0 \leqslant (2n - 1) \leqslant 6 \\
\Rightarrow 1 \leqslant 2n \leqslant 7 \\
\Rightarrow \dfrac{1}{2} \leqslant n \leqslant \dfrac{7}{2}......(2) \\
$
Similarly, for\[x = \dfrac{{(2n + 1)\pi }}{3}\], we have
$
0 \leqslant x \leqslant 2\pi \\
\Rightarrow 0 \leqslant \dfrac{{(2n + 1)\pi }}{3} \leqslant 2\pi \\
\Rightarrow 0 \leqslant (2n + 1)\pi \leqslant 6\pi \\
\Rightarrow 0 \leqslant (2n + 1) \leqslant 6 \\
\Rightarrow - 1 \leqslant 2n \leqslant 5 \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant n \leqslant \dfrac{5}{2}.....(3) \\
$
The integer values of n which satisfy (2) or (3) are 0, 1, 2, and 3.
Put these values in equation (I)
For n = 0, we have \[x = \dfrac{\pi }{3}\] or \[x = \pi \]
For n = 1, we have\[x = \dfrac{\pi }{3}\] or \[x = \pi \]
For n = 2, we have \[x = \pi \] or \[x = \dfrac{{5\pi }}{3}\]
For n = 3, we have \[x = \dfrac{{5\pi }}{3}\] or \[x = \dfrac{{7\pi }}{3}\]
Note that\[x = \dfrac{{7\pi }}{3} \Rightarrow x = 2\pi + \dfrac{\pi }{3}\].
Therefore, the condition of $0^\circ \leqslant x \leqslant 360^\circ $ is not satisfied here.
Thus, the values for which$\cos 3x = - 1$ such that $0^\circ \leqslant x \leqslant 360^\circ $are\[x = \dfrac{\pi }{3}\],\[x = \pi \], and \[x = \dfrac{{5\pi }}{3}\].
Converting the radians into degrees, we get \[x = 60^\circ \],\[x = 180^\circ \],and\[x = 300^\circ \].
Hence the correct answer is option ‘C’ $60^\circ ,180^\circ ,300^\circ $
Note: Use $\cos 180^\circ = - 1$to get the equation$\cos 3x - \cos 180^\circ = 0$ is very essential and is the key step for solving the question. The product of two real numbers, a and b, is 0 if and only if either a = 0 or b = 0. This is an important fact that we make use of in solving this question for equation (A).
Complete step-by-step solution:
We have a trigonometric equation $\cos 3x = - 1$ such that $0^\circ \leqslant x \leqslant 360^\circ $.
We need to solve this equation to find the values of x. That is, we will find those x for which the given equation is satisfied.
We know that $ - 1 \leqslant \cos \theta \leqslant 1$ for any $\theta $ and $\cos 180^\circ = - 1$…..(1)
Therefore, we can compare the given equation $\cos 3x = - 1$ with this fact in (1).
Thus, we get $\cos 3x = \cos 180^\circ $.
$ \Rightarrow \cos 3x - \cos 180^\circ = 0$
Here, we will use the identity $\cos A - \cos B = - 2\sin \dfrac{{(A + B)}}{2}\sin \dfrac{{(A - B)}}{2}$.
In our case,$A = 3x$and$B = 180^\circ $.
Therefore, applying the identity we get the following equation:
\[\cos 3x - \cos 180^\circ = - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2}\]
This would imply that \[ - 2\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0\]
Divide by -2 on both the sides.
Then we get
\[\sin \dfrac{{(3x + 180^\circ )}}{2}\sin \dfrac{{(3x - 180^\circ )}}{2} = 0\]……(A)
This is only possible when either $\sin \dfrac{{(3x + 180^\circ )}}{2} = 0$ or $\sin \dfrac{{(3x - 180^\circ )}}{2} = 0$
We know that $\sin \theta = 0$ only when $\theta = n\pi $ where n is any integer.
Therefore, we have either $\dfrac{{3x + 180^\circ }}{2} = n\pi $ or $\dfrac{{3x - 180^\circ }}{2} = n\pi $
Since the RHS is given in terms of radians, we will write $180^\circ $ as $\pi $.
So, we have
$\dfrac{{3x + \pi }}{2} = n\pi $ or $\dfrac{{3x - \pi }}{2} = n\pi $
$ \Rightarrow $$3x + \pi = 2n\pi $ or $3x - \pi = 2n\pi $
$ \Rightarrow $$3x = 2n\pi - \pi = (2n - 1)\pi $ or $3x = 2n\pi + \pi = (2n + 1)\pi $
Now divide by 2 throughout for both the equations. We get:
\[x = \dfrac{{(2n - 1)\pi }}{3}\]or\[x = \dfrac{{(2n + 1)\pi }}{3}\]……(I)
So this implies that $\cos 3x - \cos 180^\circ = 0$ if and only if \[x = \dfrac{{(2n - 1)\pi }}{3}\] or \[x = \dfrac{{(2n + 1)\pi }}{3}\] for any integer n.
But we are given that our x should be such that $0^\circ \leqslant x \leqslant 360^\circ $.
That is x should be such that $0 \leqslant x \leqslant 2\pi $
Now,
$
0 \leqslant x \leqslant 2\pi \\
\Rightarrow 0 \leqslant \dfrac{{(2n - 1)\pi }}{3} \leqslant 2\pi \\
\Rightarrow 0 \leqslant (2n - 1)\pi \leqslant 6\pi \\
\Rightarrow 0 \leqslant (2n - 1) \leqslant 6 \\
\Rightarrow 1 \leqslant 2n \leqslant 7 \\
\Rightarrow \dfrac{1}{2} \leqslant n \leqslant \dfrac{7}{2}......(2) \\
$
Similarly, for\[x = \dfrac{{(2n + 1)\pi }}{3}\], we have
$
0 \leqslant x \leqslant 2\pi \\
\Rightarrow 0 \leqslant \dfrac{{(2n + 1)\pi }}{3} \leqslant 2\pi \\
\Rightarrow 0 \leqslant (2n + 1)\pi \leqslant 6\pi \\
\Rightarrow 0 \leqslant (2n + 1) \leqslant 6 \\
\Rightarrow - 1 \leqslant 2n \leqslant 5 \\
\Rightarrow \dfrac{{ - 1}}{2} \leqslant n \leqslant \dfrac{5}{2}.....(3) \\
$
The integer values of n which satisfy (2) or (3) are 0, 1, 2, and 3.
Put these values in equation (I)
For n = 0, we have \[x = \dfrac{\pi }{3}\] or \[x = \pi \]
For n = 1, we have\[x = \dfrac{\pi }{3}\] or \[x = \pi \]
For n = 2, we have \[x = \pi \] or \[x = \dfrac{{5\pi }}{3}\]
For n = 3, we have \[x = \dfrac{{5\pi }}{3}\] or \[x = \dfrac{{7\pi }}{3}\]
Note that\[x = \dfrac{{7\pi }}{3} \Rightarrow x = 2\pi + \dfrac{\pi }{3}\].
Therefore, the condition of $0^\circ \leqslant x \leqslant 360^\circ $ is not satisfied here.
Thus, the values for which$\cos 3x = - 1$ such that $0^\circ \leqslant x \leqslant 360^\circ $are\[x = \dfrac{\pi }{3}\],\[x = \pi \], and \[x = \dfrac{{5\pi }}{3}\].
Converting the radians into degrees, we get \[x = 60^\circ \],\[x = 180^\circ \],and\[x = 300^\circ \].
Hence the correct answer is option ‘C’ $60^\circ ,180^\circ ,300^\circ $
Note: Use $\cos 180^\circ = - 1$to get the equation$\cos 3x - \cos 180^\circ = 0$ is very essential and is the key step for solving the question. The product of two real numbers, a and b, is 0 if and only if either a = 0 or b = 0. This is an important fact that we make use of in solving this question for equation (A).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

