
If ${\cos ^{ - 1}}x = \alpha ,(0 < x < 1)$ and ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3},$ then ${\tan ^{ - 1}}(2x)$ is equal to
\[
A.{\text{ }}\dfrac{\pi }{6} \\
B.{\text{ }}\dfrac{\pi }{4} \\
C.{\text{ }}\dfrac{\pi }{3} \\
D.{\text{ }}\dfrac{\pi }{2} \\
\]
Answer
606k+ views
Hint- To evaluate the value of ${\tan ^{ - 1}}(2x)$ we will first find the value of $x$ with the help of given equation, for it we will use some trigonometric formulas such as $\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1$
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

