
If ${\cos ^{ - 1}}x = \alpha ,(0 < x < 1)$ and ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3},$ then ${\tan ^{ - 1}}(2x)$ is equal to
\[
A.{\text{ }}\dfrac{\pi }{6} \\
B.{\text{ }}\dfrac{\pi }{4} \\
C.{\text{ }}\dfrac{\pi }{3} \\
D.{\text{ }}\dfrac{\pi }{2} \\
\]
Answer
534k+ views
Hint- To evaluate the value of ${\tan ^{ - 1}}(2x)$ we will first find the value of $x$ with the help of given equation, for it we will use some trigonometric formulas such as $\sin 2a = 2\sin a\cos a{\text{ and }}\cos 2a = 2{\cos ^2}a - 1$
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Complete step-by-step answer:
Given that, ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)................(1)$
Therefore $x = \cos \alpha $
And given equation is ${\sin ^{ - 1}}(2x\sqrt {1 - {x^2}} ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right) = \dfrac{{2\pi }}{3}$
Now substitute the value of $x = \cos \alpha $ in the above equation, we get
$ \Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3}$
As we know that
$
1 - {\cos ^2}A = {\sin ^2}A \\
2\sin A\cos A = \sin 2A \\
2{\cos ^2}A - 1 = \cos 2A \\
$
Now, using the above formulas, we obtain
$
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {1 - {{\cos }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{2{{\cos }^2}\alpha - 1}}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(2\cos \alpha \sqrt {{{\sin }^2}\alpha } ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos 2\alpha }}} \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow {\sin ^{ - 1}}(\sin 2\alpha ) + {\sec ^{ - 1}}\left( {\sec 2\alpha } \right) = \dfrac{{2\pi }}{3} \\
\Rightarrow 2\alpha + 2\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow 4\alpha = \dfrac{{2\pi }}{3} \\
\Rightarrow \alpha = \dfrac{\pi }{6} \\
$
From equation (1)
$
\because x = \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} \\
\Rightarrow 2x = \sqrt 3 \\
$
Therefore, the value of ${\tan ^{ - 1}}(2x)$ is
$
{\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}(\sqrt 3 ) \\
= \dfrac{\pi }{3} \\
$
Hence, the value of ${\tan ^{ - 1}}(2x)$ is $\dfrac{\pi }{3}$
Note- To solve these types of questions, memorize all the formulas of trigonometry like allied angle, addition, double angle, triple angle etc. Understand the concept of domain and range. As in above question, the function is given as ${\cos ^{ - 1}}x = \alpha {\text{ where }}(0 < x < 1)$ and we make the function in terms of x such as $x = \cos \alpha $ . So, in this type of questions try to convert inverse terms to solve the questions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
