
If \[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] , then prove that \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1\] .
Answer
604.8k+ views
Hint: Assume, \[\theta ={{\cos }^{-1}}x\] , \[\beta ={{\cos }^{-1}}y\] , and \[\alpha ={{\cos }^{-1}}z\] . Using this, transform the equation
\[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] . Solve the equation \[\theta +\beta =\pi -\alpha \] , using the property \[cos(\pi -\alpha )=-cos\alpha \] and the formula \[\cos (\theta +\beta )=cos\theta cos\beta -sin\theta sin\beta \] . Then using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\] , get the values of \[\sin \theta \] and \[\sin \beta \] . Then put the values of \[\cos \theta \] , \[\cos \beta \] , \[\cos \alpha \] , \[\sin \theta \] and \[\sin \beta \] in the equation,
\[cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \] and solve it further.
Complete step-by-step answer:
According to the question, it is given that,
\[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] …………………………(1)
Let us assume,
\[\theta ={{\cos }^{-1}}x\] …………………(2)
\[\beta ={{\cos }^{-1}}y\] …………………….(3)
\[\alpha ={{\cos }^{-1}}z\] ………………..(4)
Now, using equation (2), equation (3), and equation (4), we can transform equation (1).
On transforming equation (1), we get
\[\begin{align}
& {{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \\
& \Rightarrow \theta +\beta +\alpha =\pi \\
\end{align}\]
Now, taking \[\alpha \] to the RHS of the above equation, we get,
\[\begin{align}
& \theta +\beta +\alpha =\pi \\
& \Rightarrow \theta +\beta =\pi -\alpha \\
\end{align}\]
Now, taking cosine in LHS and RHS, we get
\[\Rightarrow \theta +\beta =\pi -\alpha \]
\[\Rightarrow \cos (\theta +\beta )=cos(\pi -\alpha )\] ……………………(5)
We know the property, \[cos(\pi -\alpha )=-cos\alpha \] ……………………..(6)
We also know the formula, \[\cos (\theta +\beta )=cos\theta cos\beta -sin\theta sin\beta \] ……………………….(7)
Using equation (6) and equation (7), we can transform equation (5).
On transforming we get
\[\Rightarrow \cos (\theta +\beta )=cos(\pi -\alpha )\]
\[\Rightarrow cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \] …………………………(8)
To solve the above equation, we need the values of \[\sin \theta \] and \[\sin \beta \] . We don’t have values of \[\sin \theta \] and \[\sin \beta \] . So, we have to find the values of \[\sin \theta \] and \[\sin \beta \] .
We know the identity, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\].
Putting the value of \[\cos \theta \] from equation (1) in the above identity, we get
\[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }=\sqrt{1-{{x}^{2}}}\] ……………………….(9)
Replacing \[\theta \] by \[\beta \] in the identity, we get
\[{{\cos }^{2}}\beta +{{\sin }^{2}}\beta =1\Rightarrow {{\sin }^{2}}\beta =1-{{\cos }^{2}}\beta \Rightarrow \sin \beta =\sqrt{1-{{\cos }^{2}}\beta }\]
Putting the value of \[\cos \beta \] from equation (2) in the above identity, we get
\[\sin \beta =\sqrt{1-{{\cos }^{2}}\beta }=\sqrt{1-{{y}^{2}}}\] ……………………….(10)
From equation (8), equation (9), and equation (10), we get,
\[\begin{align}
& \Rightarrow cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \\
& \Rightarrow xy-\sqrt{1-{{x}^{2}}}.\sqrt{1-{{y}^{2}}}=-z \\
& \Rightarrow xy+z=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\end{align}\]
Now, squaring both sides, we get
\[\begin{align}
& \Rightarrow {{(xy+z)}^{2}}={{\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)}^{2}} \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+{{z}^{2}}+2xyz=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+{{z}^{2}}+2xyz=1-{{y}^{2}}-{{x}^{2}}+{{x}^{2}}{{y}^{2}} \\
& \Rightarrow {{y}^{2}}+{{x}^{2}}+{{z}^{2}}+2xyz=1 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note:This question can also be solved by solving the LHS of \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1\] and then making it equal to 1. For that, just pout the value of x, y, and z in the above equation and then solve it further.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz \\
& ={{\cos }^{2}}\theta +{{\cos }^{2}}\beta +{{\cos }^{2}}\alpha +2\cos \theta \cos \beta \cos \alpha \\
& ={{x}^{2}}+{{y}^{2}}+{{\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right)}^{2}}+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right) \\
& ={{x}^{2}}+{{y}^{2}}+\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)+{{x}^{2}}{{y}^{2}}-2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right) \\
& ={{x}^{2}}+{{y}^{2}}+1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}+{{x}^{2}}{{y}^{2}}-2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)-2{{x}^{2}}{{y}^{2}} \\
& =1+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{y}^{2}} \\
& =1 \\
\end{align}\]
\[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] . Solve the equation \[\theta +\beta =\pi -\alpha \] , using the property \[cos(\pi -\alpha )=-cos\alpha \] and the formula \[\cos (\theta +\beta )=cos\theta cos\beta -sin\theta sin\beta \] . Then using the identity \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\] , get the values of \[\sin \theta \] and \[\sin \beta \] . Then put the values of \[\cos \theta \] , \[\cos \beta \] , \[\cos \alpha \] , \[\sin \theta \] and \[\sin \beta \] in the equation,
\[cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \] and solve it further.
Complete step-by-step answer:
According to the question, it is given that,
\[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \] …………………………(1)
Let us assume,
\[\theta ={{\cos }^{-1}}x\] …………………(2)
\[\beta ={{\cos }^{-1}}y\] …………………….(3)
\[\alpha ={{\cos }^{-1}}z\] ………………..(4)
Now, using equation (2), equation (3), and equation (4), we can transform equation (1).
On transforming equation (1), we get
\[\begin{align}
& {{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=\pi \\
& \Rightarrow \theta +\beta +\alpha =\pi \\
\end{align}\]
Now, taking \[\alpha \] to the RHS of the above equation, we get,
\[\begin{align}
& \theta +\beta +\alpha =\pi \\
& \Rightarrow \theta +\beta =\pi -\alpha \\
\end{align}\]
Now, taking cosine in LHS and RHS, we get
\[\Rightarrow \theta +\beta =\pi -\alpha \]
\[\Rightarrow \cos (\theta +\beta )=cos(\pi -\alpha )\] ……………………(5)
We know the property, \[cos(\pi -\alpha )=-cos\alpha \] ……………………..(6)
We also know the formula, \[\cos (\theta +\beta )=cos\theta cos\beta -sin\theta sin\beta \] ……………………….(7)
Using equation (6) and equation (7), we can transform equation (5).
On transforming we get
\[\Rightarrow \cos (\theta +\beta )=cos(\pi -\alpha )\]
\[\Rightarrow cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \] …………………………(8)
To solve the above equation, we need the values of \[\sin \theta \] and \[\sin \beta \] . We don’t have values of \[\sin \theta \] and \[\sin \beta \] . So, we have to find the values of \[\sin \theta \] and \[\sin \beta \] .
We know the identity, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta \Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }\].
Putting the value of \[\cos \theta \] from equation (1) in the above identity, we get
\[\sin \theta =\sqrt{1-{{\cos }^{2}}\theta }=\sqrt{1-{{x}^{2}}}\] ……………………….(9)
Replacing \[\theta \] by \[\beta \] in the identity, we get
\[{{\cos }^{2}}\beta +{{\sin }^{2}}\beta =1\Rightarrow {{\sin }^{2}}\beta =1-{{\cos }^{2}}\beta \Rightarrow \sin \beta =\sqrt{1-{{\cos }^{2}}\beta }\]
Putting the value of \[\cos \beta \] from equation (2) in the above identity, we get
\[\sin \beta =\sqrt{1-{{\cos }^{2}}\beta }=\sqrt{1-{{y}^{2}}}\] ……………………….(10)
From equation (8), equation (9), and equation (10), we get,
\[\begin{align}
& \Rightarrow cos\theta cos\beta -sin\theta sin\beta =-\cos \alpha \\
& \Rightarrow xy-\sqrt{1-{{x}^{2}}}.\sqrt{1-{{y}^{2}}}=-z \\
& \Rightarrow xy+z=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\end{align}\]
Now, squaring both sides, we get
\[\begin{align}
& \Rightarrow {{(xy+z)}^{2}}={{\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)}^{2}} \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+{{z}^{2}}+2xyz=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{y}^{2}}+{{z}^{2}}+2xyz=1-{{y}^{2}}-{{x}^{2}}+{{x}^{2}}{{y}^{2}} \\
& \Rightarrow {{y}^{2}}+{{x}^{2}}+{{z}^{2}}+2xyz=1 \\
\end{align}\]
So, LHS = RHS.
Hence, proved.
Note:This question can also be solved by solving the LHS of \[{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1\] and then making it equal to 1. For that, just pout the value of x, y, and z in the above equation and then solve it further.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz \\
& ={{\cos }^{2}}\theta +{{\cos }^{2}}\beta +{{\cos }^{2}}\alpha +2\cos \theta \cos \beta \cos \alpha \\
& ={{x}^{2}}+{{y}^{2}}+{{\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right)}^{2}}+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right) \\
& ={{x}^{2}}+{{y}^{2}}+\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)+{{x}^{2}}{{y}^{2}}-2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)}-xy \right) \\
& ={{x}^{2}}+{{y}^{2}}+1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}}+{{x}^{2}}{{y}^{2}}-2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)+2xy\left( \sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \right)-2{{x}^{2}}{{y}^{2}} \\
& =1+2{{x}^{2}}{{y}^{2}}-2{{x}^{2}}{{y}^{2}} \\
& =1 \\
\end{align}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

