
If $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0,$ then $\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b},$ Where k is equal to ?
A.0
B.1
C.2
D.3
Answer
526.8k+ views
Hint: We are required to find the value of k in the above equation given by $\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b},$ provided the equation $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0,$ We are dealing with vectors in this question and use the concept of cross product here. We multiply the first equation $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0$ by vectors of a, b and c and get 3 different equations with 3 different relations. We then substitute them in the other equation and find the value of k.
Complete step by step solution:
To solve this question, consider the relation $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0.$ We take the cross product of the above equation with vector a.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0\times \overrightarrow{a}$
We know that the cross product of any vector with itself is zero, that is, $\overrightarrow{a}\times \overrightarrow{a}=0.$ We also know that any vector multiplied with 0 gives us 0. Using this,
$\Rightarrow 0+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0$
We also know that if the order of the cross-product changes, the sign of it changes too, $\overrightarrow{a}\times \overrightarrow{b}=-\overrightarrow{b}\times \overrightarrow{a}.$ Using this for the $2\overrightarrow{b}\times \overrightarrow{a}$ term,
$\Rightarrow 0-2\overrightarrow{a}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{a}=0$
Rearranging,
$\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{c}\times \overrightarrow{a}\ldots \ldots \left( 1 \right)$
Repeating the same steps again but this time, we take a cross product with vector b.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+2\overrightarrow{b}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{b}=0\times \overrightarrow{b}$
Second term and the term on the right-hand side of the equation become 0. The third term on the left-hand side is rearranged to form a cross product $\overrightarrow{b}\times \overrightarrow{c}.$
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+0-3\overrightarrow{b}\times \overrightarrow{c}=0$
Rearranging,
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 2 \right)$
Now again, we repeat the steps but this time we use the cross product with vector c.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}+3\overrightarrow{c}\times \overrightarrow{c}=0\times \overrightarrow{c}$
Third term and the term on the right-hand side of the equation become 0. The first term on the left-hand side is rearranged to form a cross product $\overrightarrow{c}\times \overrightarrow{a}.$
$\Rightarrow -\overrightarrow{c}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{c}+0=0$
Rearranging,
$\Rightarrow \overrightarrow{c}\times \overrightarrow{a}=2\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 3 \right)$
Now consider the equation given in question,
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b}$
Substituting for the first and third terms from equations 2 and 3,
$\Rightarrow 3\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
Adding the terms on the left-hand side,
$\Rightarrow 6\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
Using equation 2 to substitute in the above equation,
$\Rightarrow 2.3\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
$\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=k\overrightarrow{a}\times \overrightarrow{b}$
Comparing both sides of the equation, we get $k=2.$
So, the correct answer is “Option C”.
Note: It is important to know the basics of vectors, cross-product of vectors and dot product of vectors in order to solve such questions. We need to note that the cross product of two vectors is usually considered in a three-dimensional space since the cross product of two perpendicular vectors yield another vector perpendicular to both the original vectors.
Complete step by step solution:
To solve this question, consider the relation $\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}=0.$ We take the cross product of the above equation with vector a.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0\times \overrightarrow{a}$
We know that the cross product of any vector with itself is zero, that is, $\overrightarrow{a}\times \overrightarrow{a}=0.$ We also know that any vector multiplied with 0 gives us 0. Using this,
$\Rightarrow 0+2\overrightarrow{b}\times \overrightarrow{a}+3\overrightarrow{c}\times \overrightarrow{a}=0$
We also know that if the order of the cross-product changes, the sign of it changes too, $\overrightarrow{a}\times \overrightarrow{b}=-\overrightarrow{b}\times \overrightarrow{a}.$ Using this for the $2\overrightarrow{b}\times \overrightarrow{a}$ term,
$\Rightarrow 0-2\overrightarrow{a}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{a}=0$
Rearranging,
$\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{c}\times \overrightarrow{a}\ldots \ldots \left( 1 \right)$
Repeating the same steps again but this time, we take a cross product with vector b.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+2\overrightarrow{b}\times \overrightarrow{b}+3\overrightarrow{c}\times \overrightarrow{b}=0\times \overrightarrow{b}$
Second term and the term on the right-hand side of the equation become 0. The third term on the left-hand side is rearranged to form a cross product $\overrightarrow{b}\times \overrightarrow{c}.$
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+0-3\overrightarrow{b}\times \overrightarrow{c}=0$
Rearranging,
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}=3\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 2 \right)$
Now again, we repeat the steps but this time we use the cross product with vector c.
$\Rightarrow \overrightarrow{a}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}+3\overrightarrow{c}\times \overrightarrow{c}=0\times \overrightarrow{c}$
Third term and the term on the right-hand side of the equation become 0. The first term on the left-hand side is rearranged to form a cross product $\overrightarrow{c}\times \overrightarrow{a}.$
$\Rightarrow -\overrightarrow{c}\times \overrightarrow{a}+2\overrightarrow{b}\times \overrightarrow{c}+0=0$
Rearranging,
$\Rightarrow \overrightarrow{c}\times \overrightarrow{a}=2\overrightarrow{b}\times \overrightarrow{c}\ldots \ldots \left( 3 \right)$
Now consider the equation given in question,
$\Rightarrow \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times \overrightarrow{a}=k\overrightarrow{a}\times \overrightarrow{b}$
Substituting for the first and third terms from equations 2 and 3,
$\Rightarrow 3\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{c}+2\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
Adding the terms on the left-hand side,
$\Rightarrow 6\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
Using equation 2 to substitute in the above equation,
$\Rightarrow 2.3\overrightarrow{b}\times \overrightarrow{c}=k\overrightarrow{a}\times \overrightarrow{b}$
$\Rightarrow 2\overrightarrow{a}\times \overrightarrow{b}=k\overrightarrow{a}\times \overrightarrow{b}$
Comparing both sides of the equation, we get $k=2.$
So, the correct answer is “Option C”.
Note: It is important to know the basics of vectors, cross-product of vectors and dot product of vectors in order to solve such questions. We need to note that the cross product of two vectors is usually considered in a three-dimensional space since the cross product of two perpendicular vectors yield another vector perpendicular to both the original vectors.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

