
If C is a skew-symmetric matrix of order n and X in \[n\times 1\] column matrix, then \[{{X}^{T}}CX\] is
(A) singular
(B) non-singular
(C) invertible
(D) non-invertible
Answer
587.4k+ views
Hint: First of all, assume that \[C=\left[ \begin{align}
& \begin{matrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] and \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] . Now, get the transpose of the matrix X, \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] . Now, multiply the matrix C and X, and get the value of \[CX\] . We know the property that the transpose of a matrix is the interchange of its rows by columns. Use this property and get the transpose of the matrix X, \[{{X}^{T}}\] . Now, multiply the matrix \[{{X}^{T}}\] and \[CX\] , and get the result. We also know the property that the determinant value of a non-invertible matrix is equal to zero. At last, conclude the answer.
Complete step-by-step solution:
According to the question, it is given that we have a skew-symmetric matrix C of order n and a matrix X of order \[n\times 1\] column matrix.
We know that the diagonal elements of a skew-symmetric matrix are zero and also the transpose of the skew-symmetric its negative.
First of all, let us assume that,
A skew-symmetric matrix C of order n = \[C=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] ……………………………………….(1)
The matrix X of order \[n\times 1\] column matrix = \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] ……………………………………….(2)
We know the property that the transpose of a matrix is simply the interchange of the rows and columns of the matrix.
Now, the transpose of the matrix X = \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] ………………………………………..(3)
From equation (1) and equation (2), we have the matrix C and X.
Now, on multiplying the matrix C and X, we get
\[CX=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,\,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]=\left[ \begin{matrix}
0\times p+a\times q+b\times r \\
\left( -a \right)\times p+0\times q+c\times r \\
\left( -b \right)\times p+\left( -c \right)\times q+0\times r \\
\end{matrix} \right]=\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right]\] ……………………………………….(4)
From equation (3) and equation (4), we have the matrix \[{{X}^{T}}\] and \[CX\] .
Now, on multiplying the matrix \[{{X}^{T}}\] and \[CX\] , we get
\[\begin{align}
& \Rightarrow {{X}^{T}}CX=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-qap+cqr-rbp-rcq \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-paq+cqr-pbr-cqr \right] \\
\end{align}\]
\[\Rightarrow {{X}^{T}}CX=\left[ 0 \right]\] ……………………………………..(5)
From equation (5), we have the value of \[{{X}^{T}}CX=\left[ 0 \right]\] .
Now, we can see that the determinant value of \[{{X}^{T}}CX\] is zero and we know that the determinant value of a singular matrix is zero ……………………………. (6)
So, the matrix \[{{X}^{T}}CX\] is singular ………………………………………(7)
We know the property that the determinant value of a non-invertible matrix is equal to zero.
From equation (6), we have the determinant value of matrix \[{{X}^{T}}CX\] .
So, the matrix \[{{X}^{T}}CX\] is non-invertible …………………………………………….(8)
Now, from equation (7) and equation (8), we can say that the matrix \[{{X}^{T}}CX\] is singular and also non-invertible.
Therefore, the correct option is (A) and (D).
Note: In this question, one might assume matrix C as \[\left[ \begin{align}
& \begin{matrix}
d & a & b \\
\end{matrix} \\
& \begin{matrix}
-a & e & c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & f \\
\end{matrix} \\
\end{align} \right]\] . If we do so then our calculation will get complex. Since the matrix C is skew-symmetric iso, its diagonal matrix is zero, and the transpose is negative of the skew-symmetric matrix.
& \begin{matrix}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] and \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] . Now, get the transpose of the matrix X, \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] . Now, multiply the matrix C and X, and get the value of \[CX\] . We know the property that the transpose of a matrix is the interchange of its rows by columns. Use this property and get the transpose of the matrix X, \[{{X}^{T}}\] . Now, multiply the matrix \[{{X}^{T}}\] and \[CX\] , and get the result. We also know the property that the determinant value of a non-invertible matrix is equal to zero. At last, conclude the answer.
Complete step-by-step solution:
According to the question, it is given that we have a skew-symmetric matrix C of order n and a matrix X of order \[n\times 1\] column matrix.
We know that the diagonal elements of a skew-symmetric matrix are zero and also the transpose of the skew-symmetric its negative.
First of all, let us assume that,
A skew-symmetric matrix C of order n = \[C=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\] ……………………………………….(1)
The matrix X of order \[n\times 1\] column matrix = \[X=\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]\] ……………………………………….(2)
We know the property that the transpose of a matrix is simply the interchange of the rows and columns of the matrix.
Now, the transpose of the matrix X = \[{{X}^{T}}=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\] ………………………………………..(3)
From equation (1) and equation (2), we have the matrix C and X.
Now, on multiplying the matrix C and X, we get
\[CX=\left[ \begin{align}
& \begin{matrix}
\,\,\,0 & \,\,a & \,b \\
\end{matrix} \\
& \begin{matrix}
-a & \,0 & \,\,c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & 0 \\
\end{matrix} \\
\end{align} \right]\left[ \begin{matrix}
p \\
q \\
r \\
\end{matrix} \right]=\left[ \begin{matrix}
0\times p+a\times q+b\times r \\
\left( -a \right)\times p+0\times q+c\times r \\
\left( -b \right)\times p+\left( -c \right)\times q+0\times r \\
\end{matrix} \right]=\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right]\] ……………………………………….(4)
From equation (3) and equation (4), we have the matrix \[{{X}^{T}}\] and \[CX\] .
Now, on multiplying the matrix \[{{X}^{T}}\] and \[CX\] , we get
\[\begin{align}
& \Rightarrow {{X}^{T}}CX=\left[ \begin{matrix}
p & q & r \\
\end{matrix} \right]\left[ \begin{matrix}
aq+br \\
-ap+cr \\
-bp-cq \\
\end{matrix} \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-qap+cqr-rbp-rcq \right] \\
& \Rightarrow {{X}^{T}}CX=\left[ paq+pbr-paq+cqr-pbr-cqr \right] \\
\end{align}\]
\[\Rightarrow {{X}^{T}}CX=\left[ 0 \right]\] ……………………………………..(5)
From equation (5), we have the value of \[{{X}^{T}}CX=\left[ 0 \right]\] .
Now, we can see that the determinant value of \[{{X}^{T}}CX\] is zero and we know that the determinant value of a singular matrix is zero ……………………………. (6)
So, the matrix \[{{X}^{T}}CX\] is singular ………………………………………(7)
We know the property that the determinant value of a non-invertible matrix is equal to zero.
From equation (6), we have the determinant value of matrix \[{{X}^{T}}CX\] .
So, the matrix \[{{X}^{T}}CX\] is non-invertible …………………………………………….(8)
Now, from equation (7) and equation (8), we can say that the matrix \[{{X}^{T}}CX\] is singular and also non-invertible.
Therefore, the correct option is (A) and (D).
Note: In this question, one might assume matrix C as \[\left[ \begin{align}
& \begin{matrix}
d & a & b \\
\end{matrix} \\
& \begin{matrix}
-a & e & c \\
\end{matrix} \\
& \begin{matrix}
-b & -c & f \\
\end{matrix} \\
\end{align} \right]\] . If we do so then our calculation will get complex. Since the matrix C is skew-symmetric iso, its diagonal matrix is zero, and the transpose is negative of the skew-symmetric matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

