
If \[AX=B\], where \[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\], what is X?
Answer
521.4k+ views
Hint: In this problem, we have to find the value of X, with the given matrix A and B. We know that \[AX=B\], where we can write it as, \[X={{A}^{-1}}B\], we also know that \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right)\], here we have to find the determinant and the adjoint of A, and finally multiply it with B to get the value of X.
Complete step by step solution:
We know that the given matrices are,
\[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\].
We also given that \[AX=B\], we can now write it as,
\[X={{A}^{-1}}B\]……. (1)
Where \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\]…… (2)
We can now find the inverse of A by finding the determinant and the adjoint of A.
We can now find the determinant, we get
\[\Rightarrow \left| A \right|=1\left( 4-4 \right)-2\left( -4-2 \right)+3\left( -2-1 \right)=3\ne 0\]
The determinant of A is 3.
We can now find the adjoint by finding the cofactor.
We can now find the cofactor of 1 in A, we get
\[\Rightarrow {{A}_{11}}=\left| \begin{matrix}
1 & 2 \\
2 & 4 \\
\end{matrix} \right|=4-4=0\]
Similarly, we can find the remaining cofactors, we get
\[\begin{align}
& \Rightarrow {{A}_{12}}=\left| \begin{matrix}
-1 & 2 \\
1 & 4 \\
\end{matrix} \right|=-4-2=-6 \\
& \Rightarrow {{A}_{13}}=\left| \begin{matrix}
-1 & 1 \\
1 & 2 \\
\end{matrix} \right|=-2-1=-3 \\
\end{align}\]
We can now find the cofactors for the second row, we get
\[\begin{align}
& \Rightarrow {{A}_{21}}=\left| \begin{matrix}
2 & 3 \\
2 & 4 \\
\end{matrix} \right|=8-6=2 \\
& \Rightarrow {{A}_{22}}=\left| \begin{matrix}
1 & 3 \\
1 & 4 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{23}}=\left| \begin{matrix}
1 & 2 \\
1 & 2 \\
\end{matrix} \right|=2-2=0 \\
\end{align}\]
We can now find the cofactors for the third row, we get
\[\begin{align}
& \Rightarrow {{A}_{31}}=\left| \begin{matrix}
2 & 3 \\
1 & 2 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{32}}=\left| \begin{matrix}
1 & 3 \\
-1 & 2 \\
\end{matrix} \right|=2+3=5 \\
& \Rightarrow {{A}_{33}}=\left| \begin{matrix}
1 & 2 \\
-1 & 1 \\
\end{matrix} \right|=1+2=3 \\
\end{align}\]
We can now arrange the cofactors, we get
\[Cofactor=\left[ \begin{matrix}
0 & 6 & -3 \\
-2 & 1 & 0 \\
1 & -5 & 3 \\
\end{matrix} \right]\]
We can now find the transpose of the cofactor which is the adjoint, we get
\[Adj=\left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now write the inverse of A, we get
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now substitute the above step in (1), we get
\[\Rightarrow X=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\]
We can now simplify the above step by matrix multiplication, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
0-4+3 \\
6+2-15 \\
-3+0+9 \\
\end{matrix} \right]=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]\]
We can now simplify the above step, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\]
Therefore, the answer is \[X=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\].
Note: Students make mistakes while finding the cofactor value in the symbol part. We should remember that the inverse of the matrix can be found by the formula \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\], where, we should remember that the adjoint is the transpose of the cofactor.
Complete step by step solution:
We know that the given matrices are,
\[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\].
We also given that \[AX=B\], we can now write it as,
\[X={{A}^{-1}}B\]……. (1)
Where \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\]…… (2)
We can now find the inverse of A by finding the determinant and the adjoint of A.
We can now find the determinant, we get
\[\Rightarrow \left| A \right|=1\left( 4-4 \right)-2\left( -4-2 \right)+3\left( -2-1 \right)=3\ne 0\]
The determinant of A is 3.
We can now find the adjoint by finding the cofactor.
We can now find the cofactor of 1 in A, we get
\[\Rightarrow {{A}_{11}}=\left| \begin{matrix}
1 & 2 \\
2 & 4 \\
\end{matrix} \right|=4-4=0\]
Similarly, we can find the remaining cofactors, we get
\[\begin{align}
& \Rightarrow {{A}_{12}}=\left| \begin{matrix}
-1 & 2 \\
1 & 4 \\
\end{matrix} \right|=-4-2=-6 \\
& \Rightarrow {{A}_{13}}=\left| \begin{matrix}
-1 & 1 \\
1 & 2 \\
\end{matrix} \right|=-2-1=-3 \\
\end{align}\]
We can now find the cofactors for the second row, we get
\[\begin{align}
& \Rightarrow {{A}_{21}}=\left| \begin{matrix}
2 & 3 \\
2 & 4 \\
\end{matrix} \right|=8-6=2 \\
& \Rightarrow {{A}_{22}}=\left| \begin{matrix}
1 & 3 \\
1 & 4 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{23}}=\left| \begin{matrix}
1 & 2 \\
1 & 2 \\
\end{matrix} \right|=2-2=0 \\
\end{align}\]
We can now find the cofactors for the third row, we get
\[\begin{align}
& \Rightarrow {{A}_{31}}=\left| \begin{matrix}
2 & 3 \\
1 & 2 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{32}}=\left| \begin{matrix}
1 & 3 \\
-1 & 2 \\
\end{matrix} \right|=2+3=5 \\
& \Rightarrow {{A}_{33}}=\left| \begin{matrix}
1 & 2 \\
-1 & 1 \\
\end{matrix} \right|=1+2=3 \\
\end{align}\]
We can now arrange the cofactors, we get
\[Cofactor=\left[ \begin{matrix}
0 & 6 & -3 \\
-2 & 1 & 0 \\
1 & -5 & 3 \\
\end{matrix} \right]\]
We can now find the transpose of the cofactor which is the adjoint, we get
\[Adj=\left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now write the inverse of A, we get
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now substitute the above step in (1), we get
\[\Rightarrow X=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\]
We can now simplify the above step by matrix multiplication, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
0-4+3 \\
6+2-15 \\
-3+0+9 \\
\end{matrix} \right]=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]\]
We can now simplify the above step, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\]
Therefore, the answer is \[X=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\].
Note: Students make mistakes while finding the cofactor value in the symbol part. We should remember that the inverse of the matrix can be found by the formula \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\], where, we should remember that the adjoint is the transpose of the cofactor.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

