
If \[AX=B\], where \[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\], what is X?
Answer
507.9k+ views
Hint: In this problem, we have to find the value of X, with the given matrix A and B. We know that \[AX=B\], where we can write it as, \[X={{A}^{-1}}B\], we also know that \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right)\], here we have to find the determinant and the adjoint of A, and finally multiply it with B to get the value of X.
Complete step by step solution:
We know that the given matrices are,
\[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\].
We also given that \[AX=B\], we can now write it as,
\[X={{A}^{-1}}B\]……. (1)
Where \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\]…… (2)
We can now find the inverse of A by finding the determinant and the adjoint of A.
We can now find the determinant, we get
\[\Rightarrow \left| A \right|=1\left( 4-4 \right)-2\left( -4-2 \right)+3\left( -2-1 \right)=3\ne 0\]
The determinant of A is 3.
We can now find the adjoint by finding the cofactor.
We can now find the cofactor of 1 in A, we get
\[\Rightarrow {{A}_{11}}=\left| \begin{matrix}
1 & 2 \\
2 & 4 \\
\end{matrix} \right|=4-4=0\]
Similarly, we can find the remaining cofactors, we get
\[\begin{align}
& \Rightarrow {{A}_{12}}=\left| \begin{matrix}
-1 & 2 \\
1 & 4 \\
\end{matrix} \right|=-4-2=-6 \\
& \Rightarrow {{A}_{13}}=\left| \begin{matrix}
-1 & 1 \\
1 & 2 \\
\end{matrix} \right|=-2-1=-3 \\
\end{align}\]
We can now find the cofactors for the second row, we get
\[\begin{align}
& \Rightarrow {{A}_{21}}=\left| \begin{matrix}
2 & 3 \\
2 & 4 \\
\end{matrix} \right|=8-6=2 \\
& \Rightarrow {{A}_{22}}=\left| \begin{matrix}
1 & 3 \\
1 & 4 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{23}}=\left| \begin{matrix}
1 & 2 \\
1 & 2 \\
\end{matrix} \right|=2-2=0 \\
\end{align}\]
We can now find the cofactors for the third row, we get
\[\begin{align}
& \Rightarrow {{A}_{31}}=\left| \begin{matrix}
2 & 3 \\
1 & 2 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{32}}=\left| \begin{matrix}
1 & 3 \\
-1 & 2 \\
\end{matrix} \right|=2+3=5 \\
& \Rightarrow {{A}_{33}}=\left| \begin{matrix}
1 & 2 \\
-1 & 1 \\
\end{matrix} \right|=1+2=3 \\
\end{align}\]
We can now arrange the cofactors, we get
\[Cofactor=\left[ \begin{matrix}
0 & 6 & -3 \\
-2 & 1 & 0 \\
1 & -5 & 3 \\
\end{matrix} \right]\]
We can now find the transpose of the cofactor which is the adjoint, we get
\[Adj=\left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now write the inverse of A, we get
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now substitute the above step in (1), we get
\[\Rightarrow X=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\]
We can now simplify the above step by matrix multiplication, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
0-4+3 \\
6+2-15 \\
-3+0+9 \\
\end{matrix} \right]=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]\]
We can now simplify the above step, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\]
Therefore, the answer is \[X=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\].
Note: Students make mistakes while finding the cofactor value in the symbol part. We should remember that the inverse of the matrix can be found by the formula \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\], where, we should remember that the adjoint is the transpose of the cofactor.
Complete step by step solution:
We know that the given matrices are,
\[A=\left[ \begin{matrix}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4 \\
\end{matrix} \right]\], \[B=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\].
We also given that \[AX=B\], we can now write it as,
\[X={{A}^{-1}}B\]……. (1)
Where \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\]…… (2)
We can now find the inverse of A by finding the determinant and the adjoint of A.
We can now find the determinant, we get
\[\Rightarrow \left| A \right|=1\left( 4-4 \right)-2\left( -4-2 \right)+3\left( -2-1 \right)=3\ne 0\]
The determinant of A is 3.
We can now find the adjoint by finding the cofactor.
We can now find the cofactor of 1 in A, we get
\[\Rightarrow {{A}_{11}}=\left| \begin{matrix}
1 & 2 \\
2 & 4 \\
\end{matrix} \right|=4-4=0\]
Similarly, we can find the remaining cofactors, we get
\[\begin{align}
& \Rightarrow {{A}_{12}}=\left| \begin{matrix}
-1 & 2 \\
1 & 4 \\
\end{matrix} \right|=-4-2=-6 \\
& \Rightarrow {{A}_{13}}=\left| \begin{matrix}
-1 & 1 \\
1 & 2 \\
\end{matrix} \right|=-2-1=-3 \\
\end{align}\]
We can now find the cofactors for the second row, we get
\[\begin{align}
& \Rightarrow {{A}_{21}}=\left| \begin{matrix}
2 & 3 \\
2 & 4 \\
\end{matrix} \right|=8-6=2 \\
& \Rightarrow {{A}_{22}}=\left| \begin{matrix}
1 & 3 \\
1 & 4 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{23}}=\left| \begin{matrix}
1 & 2 \\
1 & 2 \\
\end{matrix} \right|=2-2=0 \\
\end{align}\]
We can now find the cofactors for the third row, we get
\[\begin{align}
& \Rightarrow {{A}_{31}}=\left| \begin{matrix}
2 & 3 \\
1 & 2 \\
\end{matrix} \right|=4-3=1 \\
& \Rightarrow {{A}_{32}}=\left| \begin{matrix}
1 & 3 \\
-1 & 2 \\
\end{matrix} \right|=2+3=5 \\
& \Rightarrow {{A}_{33}}=\left| \begin{matrix}
1 & 2 \\
-1 & 1 \\
\end{matrix} \right|=1+2=3 \\
\end{align}\]
We can now arrange the cofactors, we get
\[Cofactor=\left[ \begin{matrix}
0 & 6 & -3 \\
-2 & 1 & 0 \\
1 & -5 & 3 \\
\end{matrix} \right]\]
We can now find the transpose of the cofactor which is the adjoint, we get
\[Adj=\left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now write the inverse of A, we get
\[\Rightarrow {{A}^{-1}}=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\]
We can now substitute the above step in (1), we get
\[\Rightarrow X=\dfrac{1}{3}\times \left[ \begin{matrix}
0 & -2 & 1 \\
6 & 1 & -5 \\
-3 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]\]
We can now simplify the above step by matrix multiplication, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
0-4+3 \\
6+2-15 \\
-3+0+9 \\
\end{matrix} \right]=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]\]
We can now simplify the above step, we get
\[\Rightarrow X=\dfrac{1}{3}\left[ \begin{matrix}
-1 \\
-7 \\
6 \\
\end{matrix} \right]=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\]
Therefore, the answer is \[X=\left[ \begin{matrix}
-\dfrac{1}{3} \\
-\dfrac{7}{3} \\
2 \\
\end{matrix} \right]\].
Note: Students make mistakes while finding the cofactor value in the symbol part. We should remember that the inverse of the matrix can be found by the formula \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}\left( adjA \right),\left| A \right|\ne 0\], where, we should remember that the adjoint is the transpose of the cofactor.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

